

_	Série	Rumo ao ITA – Nº 01	Ensino	Ensino Pré-Universitário		
Profe	SSOR(A)	Judson	SEDE	— —		
A	LUNO(A)		N°	TC		
•	Turma	Turno	D ATA/	/	Matemática	

Trigonometria

Introdução

Desde os primórdios da história, a experiência matemática do homem se confunde com a necessidade de resolver problemas envolvendo trigonometria.

Neste contexto, a trigonometria é a parte da Matemática que tenta despertar nos estudantes desta bela ciência o prazer da descoberta e entendimento, através da resolução de problemas e da análise de situações das mais engenhosas.

Banco de problemas

Esta lista contém o banco de problemas para as turmas ITA e IME de Matemática 2010 de qualquer vestibular do país. Os problemas estão divididos em vários tópicos: Secção Vestibular, Secção Escolas Militares e Secção Olimpíadas. Todos os problemas aqui contidos envolvem um raciocínio matemático apurado e certa dose de criatividade!

Um pouco de História

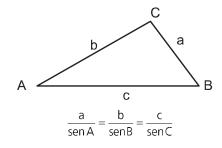
A palavra trigonometria tem origem na Grécia da palavra trigonos (triângulo) + metrûm (medida). Etimologicamente, trigonometria significa medida de triângulos.

Por vezes, pensa-se que a origem da Trigonometria está exclusivamente ligada à resolução de situações de medição de terrenos ou determinação de medidas sobre a superfície da terra. No entanto, enquanto ramo do conhecimento científico, é impossível separar a Trigonometria da Astronomia. Daí que o seu desenvolvimento como ciência exata viesse a exigir medições e cálculos de grande precisão. É neste contexto que o astrônomo grego Hiparco de Niceia (180-125 a.C.) é considerado o fundador da Trigonometria. Foi ele que introduziu as medidas sexagesimais em Astronomia e elaborou a primeira tabela trigonométrica. Hiparco utilizou a trigonometria para fazer medições, prever eclipses, fazer calendários e na navegação.

A Hiparco seguiram-se outros no estudo e desenvolvimento da trigonometria, como, por exemplo, Ptolomeu.

No séc.III, os indianos e os árabes deram nova dimensão à trigonometria ao introduzirem a trigonometria esférica. A Trigonometria tem como objetivo principal o estudo das relações entre lados e ângulos de um triângulo e constitui instrumento indispensável na resposta a necessidades da Astronomia e ainda da navegação, cartografia e da topografia.

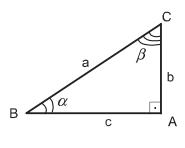
O estabelecimento de certas relações que hoje chamamos **fórmulas fundamentais da Trigonometria** deve-se aos matemáticos hindus, do séc. V ao séc. XII. De entre eles destaca-se Aryabhata (séc.VI), um astrônomo indiano, tendo já nesta altura associado o seno de um ângulo ao centro à medida da corda correspondente e elaborado também uma tábua de valores do seno. Matemáticos árabes, depois de traduzirem as obras deixadas pelos hindus, desenvolveram o estudo das razões trigonométricas em triângulos retângulos e estabeleceram, para qualquer triângulo, o chamado teorema ou **lei dos senos**.



A Trigonometria começa a afirmar-se como ciência autônoma a partir do séc. XI quando Al-Biurine reúne todas as demonstrações, quer de origem grega, quer de origem indiana, até então conhecidas e usadas em Trigonometria. Deve-se ainda aos árabes a introdução desta ciência na Europa Ocidental. Na Europa, a instituição da Trigonometria como ciência autônoma em relação à Astronomia, é iniciada através da tradução e publicação dos manuscritos clássicos, bem como da elaboração de uma introdução completa à Trigonometria, e ficou a dever-se a Johaness Müller, um astrônomo prussiano, mais conhecido por Regiomontano (1436-1476). A obra de Regiomontano continha, por exemplo, a "Lei dos senos" aplicada a triângulos esféricos. No séc.XVI, François Viète (1540-1603) estabeleceu várias relações trigonométricas tendo-as associado às soluções de equações do 3ºgrau – é a ligação da Trigonometria à Álgebra. Viète introduziu novos teoremas que permitiram relacionar lados e ângulos de triângulos não retângulos. Neper e Briggs usaram o cálculo logarítmico para estabelecerem novas fórmulas trigonométricas (séc. XVII). No séc.XIX, a Trigonometria atinge o seu ponto máximo, ficando ligada à análise através das séries. Hoje, a Trigonometria usa-se em muitas situações, nomeadamente na Física.

Relações entre os elementos de um triângulo retângulo

Consideremos o triângulo ABC retângulo em A e procuremos determinar as funções trigonométricas a partir de seus elementos principais.



$$\begin{split} m\left(\overline{AB}\right) &= c & m\left(A\right) = 90^{\circ} \\ m\left(\overline{BC}\right) &= a & m\left(\widehat{B}\right) &= \alpha \\ m\left(\overline{AC}\right) &= b & m\left(\widehat{C}\right) &= \beta \end{split}$$

O lado que se opõe ao ângulo reto num triângulo é conhecido por hipotenusa (lado BC na figura) e os lados que são adjacentes ao mesmo são conhecidos por catetos (lado AB e lado AC).

seno ângulo =
$$\frac{\text{cateto oposto}}{\text{hipotenusa}}$$
Cos ângulo = $\frac{\text{cateto adjacente}}{\text{hipotenusa}}$

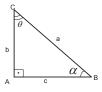
Tg ângulo =
$$\frac{\text{cateto oposto}}{\text{cateto adjacente}}$$

$$Tgx = \frac{sen x}{cos x} \qquad sec x = \frac{1}{cos x}$$

$$Cossec x = \frac{1}{sen x} \qquad cotg x = \frac{cos x}{sen x}$$

Ângulos complementares

Observando a figura, notamos que:



Mas,
$$\alpha + \theta + 90 = 180$$

 $\Rightarrow \alpha + \theta = 90$

 α e θ são ângulos complementares. Assim, dizemos que cofunções de ângulos complementares são iguais.

Generalizando:

sen
$$\alpha = \cos (90 - \alpha)$$

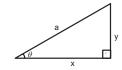
 $\cos \alpha = \sin (90 - \alpha)$
 $\tan \alpha = \cot (90 - \alpha)$
 $\tan \alpha = \cot (90 - \alpha)$

Resolução de triângulos retângulos

Resolução de triângulos retângulos "significa encontrar os comprimentos de cada lado e as medidas de cada ângulo desse triângulo." Isto é:

Conhecendo a hipotenusa e um ângulo agudo

Dada a figura:



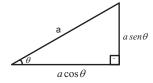
cálculo de x:

$$\cos \theta = \frac{x}{a} \rightarrow x = a \cdot \cos \theta$$

cálculo de y:

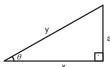
$$sen\theta = \frac{y}{a} \rightarrow y = a \cdot sen\theta$$

Concluímos que:



Conhecendo um ângulo agudo e o comprimento do cateto oposto a esse ângulo.

Dada a figura:



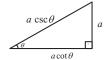
Cálculo de x:

$$\cot g \theta = \frac{x}{a} \rightarrow x = a \cdot \cot g \theta$$

Cálculo de v

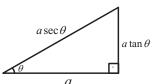
$$\csc \theta = \frac{y}{a} \rightarrow y = a \cdot \csc \theta$$

Concluímos que:



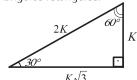
Conhecendo um ângulo agudo e o comprimento do cateto adjacente a esse ângulo

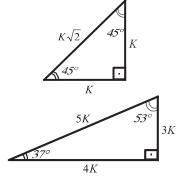
De acordo com as ideias anteriores de maneira análoga temos:



Razões trigonométricas dos ângulos de 30°, 37°, 45°, 53° e 60°

As razões trigonométricas desses ângulos obedecem a partir dos seguintes triângulos retângulos.





Então, com relação aos triângulos anteriores, concluímos que:

R.T. / ÂNGULO	30°	37°	45°	53°	60°		
SEN	$\frac{1}{2}$	3 5	$\frac{\sqrt{2}}{2}$	<u>4</u> 5	<u>√3</u> 2		
COS	$\frac{\sqrt{3}}{2}$	<u>4</u> 5	$\frac{\sqrt{2}}{2}$	3 5	1/2		
TAN	<u>√3</u> 3	3/4	1	4/3	√3		
СОТ	√3	4/3	1	3/4	<u>√3</u> 3		
SEC	$\frac{2\sqrt{3}}{3}$	<u>5</u> 4	√2	<u>5</u> 3	2		
COSEC	2	<u>5</u> 3	√2	<u>5</u>	$\frac{2\sqrt{3}}{3}$		

Relação fundamental da trigonometria e suas derivadas

Relação fundamental da trigonometria

De acordo com o Teorema de Pitágoras temos:

$$sen^2\alpha + cos^2\alpha = 1$$

OSG.: 56747/11

Relações decorrentes

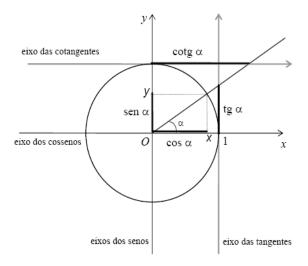
A partir da relação fundamental da trigonometria, podemos desenvolver duas outras relações muito importantes que serão muito úteis para a resolução de exercícios de maiores graus de dificuldade: Veja!!!!

Sabe-se que: $sen^2\alpha + cos^2\alpha = 1$ para $\forall x \in \mathbb{R}$

$$\begin{split} tg^2\alpha + 1 &= sec^2\alpha \quad \text{para} \quad x \neq \frac{\pi}{2} + k\pi, \ k \in Z \\ &\cot g^2\alpha + 1 = cossec^2\alpha \quad \text{para} \quad x \neq k\pi, \ k \in Z \end{split}$$

Representação das relações trigonométricas no ciclo

Observamos na figura abaixo as razões trigonométricas e suas relações fundamentais decorrentes no ciclo trigonométrico com relação aos eixos ${\bf x}$ e ${\bf y}$.



Exercícios

01. (FEI-2000) Na figura abaixo, o raio da circunferência maior é o triplo do raio da menor. A reta **s** é tangente às duas circunferências. A reta **t** é tangente às duas circunferências,

no mesmo ponto. Quanto vale $\cos\left(\frac{\alpha}{2}\right)$?

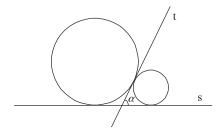
A)
$$\frac{1}{3}$$

B)
$$\frac{1}{2}$$

C)
$$\frac{\sqrt{2}}{2}$$

D)
$$\frac{\sqrt{3}}{2}$$

E) $\frac{\sqrt{2}}{3}$



02. (UFPB) O valor da expressão

$$\frac{1}{1+\sin^2 x} + \frac{1}{1+\cos^2 x} + \frac{1}{2+\tan^2 x} + \frac{1}{2+\cot g^2 x} \text{ \'e igual a:}$$

- A) (
- B) 1
- C) 2
- E) $\frac{1}{2}$
- **03**. (Fuvest/2002) Se α está no intervalo $\left[0, \frac{\pi}{2}\right]$ e satisfaz $\sin^4 \alpha \cos^4 \alpha = \frac{1}{4}$, então o valor da tangente de α é:

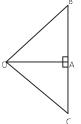
A)
$$\sqrt{\frac{3}{5}}$$

- B) $\sqrt{\frac{5}{3}}$
- C) $\sqrt{\frac{3}{7}}$
- D) $\sqrt{\frac{7}{3}}$
- E) $\sqrt{\frac{5}{7}}$
- 04. Dada a figura ao lado:

Sabendo que o ângulo $O = 2\theta$ sendo AO uma bissetriz e OB = OC = 1. Prove que:

A) sen $(2\theta) = 2 \cdot \text{sen } \theta \cdot \text{cos } \theta$ para $\theta \in (0^{\circ} \text{ a } 45^{\circ})$

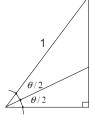
B)
$$\operatorname{sen}\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos \theta}{2}} \operatorname{para} \theta \in (0^{\circ} \text{ a } 90^{\circ})$$



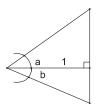
- **05**. Calcule o sen 18° e o cos 18° utilizando o mesmo raciocínio da questão anterior.
- **06**. Dada a figura prove que:

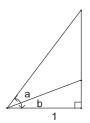
A)
$$tg\left(\frac{\theta}{2}\right) = \frac{sen\theta}{1 + cos\theta}$$

B) Calcule as funções trigonométricas de 15°



07. Dada as figuras abaixo:



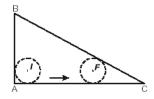


Prove que:

$$sen(a + B) = sena.cosb + senb.cosa$$

$$sen(a - B) = sena.cosb - senb.cosa$$

- 08. A diagonal de um paralelepípedo retângulo forma com as três arestas concorrentes ângulos α , β e θ . Determine a relação entre os cossenos desses ângulos.
- 09. Um triângulo retângulo tem hipotenusa 1 e perímetro $\frac{\sqrt{6}+2}{2}$. Qual é a medida do menor de seus ângulos?
- **10**. Sabendo que f(x) = a.senx + b.cos x é uma função clássica natrigonometria. Prove que os valores máximo e mínimo desta função, são respectivamente, $\sqrt{a^2 + b^2}$ e $-\sqrt{a^2 + b^2}$
- **11**. (UFC) Seja β um ângulo agudo tal que $sen\beta = \frac{4}{5}$. Se α é um ângulo qualquer e M = $\frac{\sqrt{3}\operatorname{sen}(\alpha+\beta) - (4/\sqrt{3})\cos(\alpha+\beta)}{\operatorname{sen}\alpha}$ determine $\sqrt{3} \cdot M$.
- 12. (UFRJ) Na figura a seguir, o círculo de raio 1 cm rola da posição I para a posição F, sempre tangenciando o cateto AC do triângulo retângulo ABC.



Na posição I, o círculo também tangencia AB e na posição F, ele é tangente a BC. Os lados do triângulo valem AB = 6 cm, AC = 8 cm e BC = 10 cm.Determine a distância percorrida pelo centro do círculo.

13. (Uece) Se $tg(\frac{\theta}{2}) = \frac{\sqrt{5}}{4}$, $0 < \theta < \frac{\pi}{2}$, então o valor da expressão

$$\frac{20\sqrt{5}}{\frac{1}{\sin \theta} + \frac{1}{tg\theta}}$$
 é igual a:

A) 20 C) 30 E) 45

- **14**. Sabendo que $a^2 + b^2 = 4$, então o valor de **S** na expressão $S = (a \cdot \cos x - b \cdot \sin x)^2 + (a \cdot \sin x + b \cdot \cos x)^2$ independente do arco x vale:
 - A) 1 C) 3

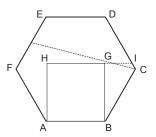
B) 2

E) 5

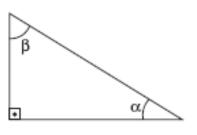
- 15. (ITA-SP) Deduzir as expressões:

$$sen \ a = \frac{2tg(a/2)}{1+tg^2(a/2)} \ e \ cos \ a = \frac{1-tg^2\left(a/2\right)}{1+tg^2\left(a/2\right)}$$

- 16. (IBMEC/2004) Considere na figura abaixo o quadrado ABGH e o hexágono regular ABCDEF, ambos de lado $\sqrt{2+\sqrt{3}}$
 - A) Determine a medida do segmento \overline{CG} .
 - B) Determine a medida do segmento GI.
 - C) Determine a medida do segmento GJ, que é o prolongamento de GC até o segmento EF.



- 17. (Mack/2004) Se, no triângulo retângulo da figura, tem-se $\cos \alpha = \frac{3}{4}$, então o valor de $sen(2\alpha + 3\beta)$ é:

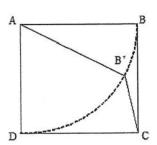


18. Seja f uma função definida nos reais em reais, descrita abaixo:

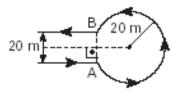
$$f(x) = \begin{vmatrix} 1 & 0 & 1 & 0 \\ -2 & sen^{2}(2x) & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & -cos(4x) & 0 & 4cos(2x) \cdot cossec(2x) \end{vmatrix}$$

Calcule o período e a imagem da função.

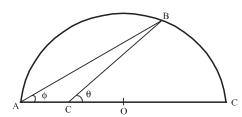
19. (IME-RJ) Em um quadrado ABCD o segmento AB', com comprimento igual ao lado do quadrado, descreve um arco de círculo, conforme indicado na figura. Determine o ângulo BÂB' correspondente à posição em que a razão entre o comprimento do segmento B'C e o lado do quadrado vale $\sqrt{3} - \sqrt{6}$.



- 20. (Mack/2004) Percorrendo uma estrada de 20 m de largura, um veículo inicia um retorno em um ponto A, utilizando a trajetória circular da figura, cujo raio é 20 m. Se nessa rotatória a velocidade máxima permitida é de 20 km/h, o menor tempo necessário para que esse veículo percorra o arco AB é: (adote $\pi = 3$)
 - A) 12 seg
 - B) 18 seg
 - C) 15 seg
 - D) 25 seg
 - E) 22 seg



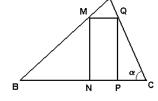
- **21**. (Mack/2000) No triângulo retângulo da figura, $\overline{AQ} = 2 \cdot \overline{AP}$. Então, sen $(\alpha + 3\beta)$ vale:
- 22. (UFMG/99) Observe a figura.



Nessa figura, O é o centro do semicírculo de diâmetro AD, AC = CO, $BAD = \phi$ e $BCD = \theta$.

Demonstre que $\frac{1}{tq\phi} + \frac{1}{tq2\phi} = \frac{2}{tq\theta}$

- 23. (Fuvest/96) No triângulo ABC, AC = 5 cm, BC = 20 cm e $\cos\alpha = 3/5$. O maior valor possível, em cm², para a área do retângulo MNPQ, construído conforme mostra a figura a seguir, é:
 - A) 16
 - B) 18 C) 22
 - D) 20
 - E) 24



24. Se $\sqrt{\sec^2 x + \sqrt[3]{\sec^4 x \cdot tg^2 x}} + \sqrt{tg^2 x + \sqrt[3]{\sec^2 x \cdot tg^4 x}} = 8.$

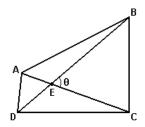
O valor de $(\sec x)^{\frac{2}{3}} + (\tan x)^{\frac{2}{3}}$, é igual a:

C) 3 E) 5

D) 4

- **25**. O valor da expressão $\frac{4-5 \cdot \cos x}{3-5 \cdot \sin x} + \frac{3+5 \cdot \sin x}{4+5 \cdot \cos x}$ é igual a:

- 26. Calcule a hipotenusa do triângulo retângulo cujos ângulos agudos são **x** e **y** e os catetos são iguais a senx + seny e cosx + cosy.
- 27. (Fuvest/2000) Na figura seguinte, E é o ponto de intersecção das diagonais do quadrilátero ABCD e θ é o ângulo agudo BEC. Se EA = 1, EB = 4, EC = 3 e ED = 2, então a área do quadrilátero ABCD será:
 - A) $12 \cdot \text{sen}\theta$
 - B) 8 · senθ
 - C) $6 \cdot \text{sen}\theta$
 - D) $10 \cdot \cos\theta$
 - E) 8 · cosθ



GABARITO									
01	02	03	04	05	06	07	08	09	10
D	C	В	_	_	_	_	*	15°	_
11	12	13	14	15	16	17	18	19	20
*	*	В	D	_	*	В	*	*	В
21	22	23	24	25	26	27			
C.	_	C.	D	Α	*	Α			

- - **09**: 15°
 - **11**: 5

16: A) 1; B)
$$\frac{\sqrt{6}}{3}$$
; C) $2\sqrt{3}-1$

- **18:** período = $\frac{\pi}{2}$ e imagem = $\left[-\sqrt{5}, +\sqrt{5}\right]$
- **19:** $\alpha = 15^{\circ}$ ou $\alpha = 75^{\circ}$ **26:** 2
- Demonstração.

Anotações

SEÇÃO DE ESCOLAS MILITARES

- Esta seção de escolas militares tem como objetivo principal resolver questões que já foram abordadas em vários concursos militares. Mas também aprofundando os seus conhecimentos matemáticos e adquirindo cada vez um raciocínio apurado e uma certa dose de criatividade nas resoluções dos problemas.
- 01. (Aman/2006) O valor do determinante

- A) $sen \frac{\pi}{12}$
- C) $\operatorname{sen} \frac{\pi}{12} \cdot \cos \frac{\pi}{12}$

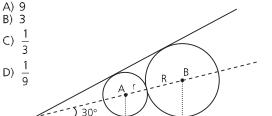
- **02.** (Aman/2003) Seja α um ângulo do quarto quadrante cujo cosseno é igual a 1/4. Determine o valor de **y** na expressão:

$$y = \frac{\sec^2 \alpha - \sec \alpha \cdot \csc \alpha}{1 - \cot g\alpha}$$

- **Obs.:** sec α , cossec α e cotg α representam respectivamente a secante, a cossecante e a cotangente do ângulo α .
- **03.** (Aman/2005) Em um triângulo ABC, α e β são ângulos complementares. Calcule o valor numérico da expressão:

$$(\cos \alpha - \cos \beta)^2 + (\sin \alpha + \sin \beta)^2$$

- 04. (Aman/2005-Modificado) ABCD é um quadrado de lado 1. P e Q são pontos em AB e BC tais que o ângulo PDQ é igual a 45°. Seja **d** o perímetro do triângulo PBQ que é constante. Então o valor **d** é igual a:
 - A) 1 C) 3 E) 5
- B) 2 D) 4
- **05.** (AMAN-2004) Sejam α e β ângulos pertencentes ao intervalo tais que $sen \beta = cos 2\alpha + 2sen \alpha - 1$. Determine o valor de α para que o ângulo β tenha seu valor máximo.
- 06. (Epcar/2000) Considere dois círculos de raios (r) e (R) centrados em A e B, respectivamente, que são tangentes externamente e cujas retas tangentes comuns formam um ângulo de 60°. A razão entre as áreas do círculo maior e do menor é:



- 07. (ITA/1981) Se

 R denota o conjunto dos números reais e (a, B) o intervalo aberto $\{x \in \mathbb{R} \mid a < x < b \}$ seja $\left(0, \frac{\pi}{2}\right) \to R$ definida por: $f(x) = \sqrt{\sec^2 x + \cos \sec^2 x}$
 - Se $\alpha \in (0, \frac{\pi}{2})$ é tal que $tg\alpha = \frac{a}{b}$, então $f(\alpha)$ é igual a:
- B) $\frac{\sqrt{a^2 + b^2}}{2}$ D) $\frac{a^2 + b^2}{a \cdot b}$
- E) a + b
- **08.** (Escola Naval) Sabendo que sen x · cos x = $\frac{1}{\sqrt{6}}$. O valor de E
 - na expressão $E = sen^6x + cos^6x$ é igual a:

 - E) 1
- 09. (ITA/2000) Sabe-se que x é um número real pertencente ao intervalo $]0, 2\pi[$ e que o triplo da sua secante, somado ao dobro da sua tangente é igual a 3. Então, o cosseno de x é igual a:

 - 15 26
 - 13 E) 49

Anotações

