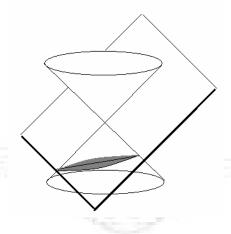


Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner

5 - Complementos

De onde veio o nome seção cônica?

Seções cônicas são as seções formadas pela interseção de um plano com uma superfície cônica.



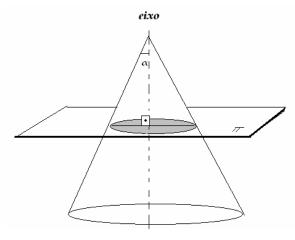
Teorema de Dandelin

Dandelin provou que há quatro tipos de seções cônicas possíveis, e denominaremo-las elipses, circunferências, parábolas e hipérboles.

Imagine uma superfície cônica com eixo de revolução e cortada por um plano π . Sejam α o ângulo de cada geratriz do cone com o eixo e β o ângulo que π faz com o eixo.

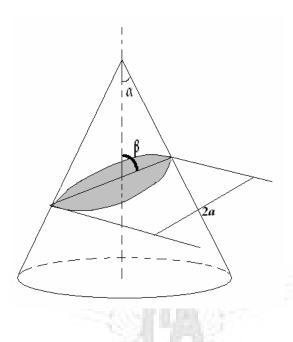
I)
$$\beta = 90^{\circ}$$

Circunferência

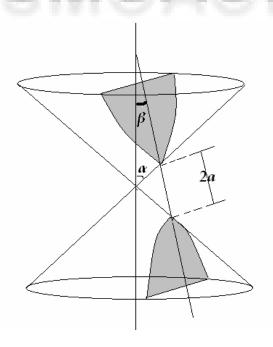


II)
$$\beta \neq \alpha$$
 $\beta > \alpha$

Gênero Elipse

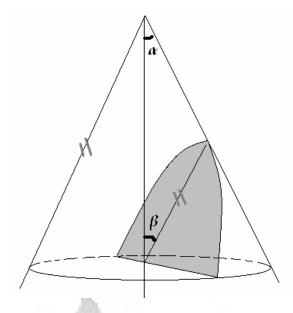


III) $\beta \neq \alpha$ $\beta < \alpha$ Gênero Hipérbole



IV)
$$\beta = \alpha$$

Gênero Parábola



Excentricidade

A partir dessas definições de seções cônicas, podemos redefinir as quantidades excentricidade de caráter geral.

Excentricidade de uma cônica é a quantidade dada pela razão $e=\frac{\cos\beta}{\cos\alpha}$ onde α e β são os ângulos denotados nas figuras anteriores.

Notar que nos diferentes tipos de cônicas as excentricidades têm faixas de valores definidos:

Circunferências: e = 0

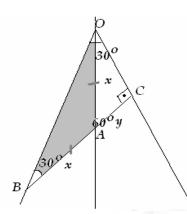
Elipses: 0 < e < 1 Parábolas: e = 1 Hipérboles: e > 1

Muitos livros preferem denotar circunferências como casos particulares de elipses cuja excentricidade é $\mathbf{0}$.

Exercício Resolvido Contextualizado

Em uma superfície cônica de revolução de vértice O, as geratrizes fazem 30 graus com o eixo de rotação. Um plano corta o eixo no ponto A e faz 60 graus com o eixo. Calcule a área da seção (AO=2)

Solução:



$$e = \frac{\cos \beta}{\cos \alpha} = \frac{\cos 60^{\circ}}{\cos 30^{\circ}} = \frac{1}{\sqrt{3}} = \frac{c}{a} < 1$$

(Seção cônica do tipo elipse)

Da figura,

$$y = x \cdot \cos 60^{0} = \frac{x}{2}$$
$$2 = OA = BA = x \quad (\Box BAO \quad is \'{o}sceles)$$

$$x + y = 2a \implies 2 + 1 = 2a \implies a = \frac{3}{2}$$

$$\frac{c}{a} = \frac{1}{\sqrt{3}} \implies c = \frac{\sqrt{3}}{2}$$

Na elipse: $a^2 = b^2 + c^2$, logo:

$$b^2 = a^2 - c^2 = \frac{9}{4} - \frac{3}{4} = \frac{3}{2} \implies b = \frac{\sqrt{6}}{2}$$

Sabemos que a área de uma elipse é dada por: $A = \pi ab$ Logo a área pedida é:

$$A = \frac{3\pi\sqrt{6}}{4}$$

Foco de uma Cônica e Diretriz de uma cônica

A partir da nossa definição de Dandelin de seções cônicas, definimos a quantidade excentricidade, e com isso podemos definir o que é um foco de uma cônica.

Seja F um ponto no espaço e d uma reta no espaço tal que qualquer ponto de uma seção cônica atenda à:

$$\frac{\overline{PF}}{\overline{Pd}} = e$$

Definimos F como sendo o foco da seção cônica, e d como sendo a diretriz da cônica. Ou seja, com isso, podemos também redefinir cada um dos tipos de seções cônicas:

Dado um ponto F fixo e d uma reta fixa no espaço, definimos:

Elipse é o LG dos pontos tal que $\frac{\overline{PF}}{\overline{Pd}}$ = constante <1

Hipérbole é o LG dos pontos tal que $\frac{\overline{PF}}{\overline{Pd}}$ = constante >1

Parábola é o LG dos pontos tal que $\frac{\overline{PF}}{\overline{Pd}} = 1$

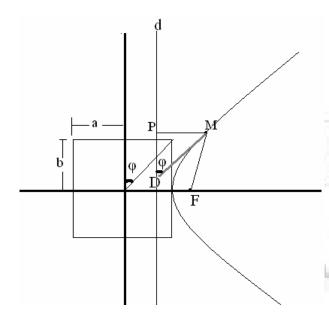
OBS: 1. As definições de cada tipo de cônica vistas nos 3 primeiros capítulos da série são coerentes com essa nova definição.

- 2. Para elipses e parábolas são definidas 2 diretrizes (para que se atenda à definição para cada um dos focos).
- 3. Pela simetria das seções cônicas podemos definir eixos de simetria (eixos principais e secundários) a cada tipo de seção. No caso de hipérbole temos os eixos transverso e não-transverso; no caso de elipse temos eixo maior e eixo menor; no caso de parábola temos o eixo principal. Tais eixos são perpendiculares e paralelos às retas diretrizes das cônicas.

Exercício Resolvido Contextualizado

[IME 79] Por um ponto M qualquer de uma hipérbole (h), traça-se uma paralela a uma assíntota (a) de (h): esta paralela encontra uma diretriz (d) de (h) em D. Sendo F o foco de (h) correspondente à diretriz (d), mostre que: MD = MF.

Solução:



Considere a projeção P de M sobre a diretriz d (como indica a figura)

Sendo, MF= Q um raio focal da hipérbole, e sabendo que:

$$\frac{\overline{MF}}{\overline{MP}} = e$$

Temos:
$$MP = \frac{\rho}{\rho}$$

Da semelhança entre o triangulo PMD e o triangulo formado pela assíntota e o retângulo característico da hipérbole, temos que:

$$\frac{MP}{MD} = sen\varphi = \frac{a}{\sqrt{a^2 + b^2}} \implies MD = \frac{\rho}{e} \cdot \frac{\sqrt{a^2 + b^2}}{a} = \frac{\rho}{e} \cdot \frac{c}{a} = \rho$$

Assim, MD = MF CQD.

Exercícios de Fixação

- 1. [IME 1980] Calcule os eixos e a excentricidade da cônica, seção por um plano π em um cone de revolução R, de vértice V, sabendo-se que:
 - A excentricidade da seção por π é a maior possível para o cone R.
 - 2) V dista de π 6 unidades de comprimento.
 - 3) R é tal que a seção por um plano perpendicular a uma geratriz é uma hipérbole equilátera.
- 2. [IME 1982] É dada uma elipse de eixo focal 2^a e excentricidade igual a $\sqrt{\frac{2}{3}}$. Essa elipse é seção de um cone de revolução: o ângulo que o plano da elipse forma com o eixo do cone é de 45 graus. Pede-se, em função de a, a distância do vértice V do cone ao plano da elipse.
- 3. [IME 1989] Na elipse de excentricidade 0,5 , foco na origem e reta diretriz dada por 3x + 4y= 25, determine:
 - a) O outro foco da elipse
 - b) a equação das diretrizes da elipse.

Revisão Geral

Segue uma bateria de exercícios do IME e do ITA a respeito de cônicas. O intuito desses exercícios é revisar a matéria vista na série de cônicas inteira. Em alguns deles a saída por geometria analítica será mais direta e mais facilitada. Cabe ao leitor exercitar a distinção entre problemas que devem ser "atacados" pelos teoremas vistos nos capítulos anteriores, ou por geometria analítica.

- 1. [ITA] Determine o lugar geométrico dos centros das circunferências que são tangentes ao eixo das ordenadas, e os pontos de interseção com o eixo das abcissas distam 2 unidades um do outro.
- 2. [IME 86] Seja uma hipérbole equilátera de centro O e focos F e F´. Mostre que o segmento determinado por O e por um ponto M qualquer da hipérbole é media proporcional entre os segmentos MF e MF´.
- 3. [IME 86] Seja uma parábola de foco F e diretriz d. Por um ponto P da diretriz, traçam-se tangentes à parábola que a interceptam em A e B. Demonstre que A, B e F estão em linha reta.
- 4. [IME 85] Dados dois pontos fixos A e B (AB=d), considere as elipses passando por B, com foco em A e eixo maior de comprimento 2a, tal que 2a > d . Determine o lugar geométrico do segundo foco F das elipses.
- 5. [IME 84] Dá-se (P) uma parábola de foco F e diretriz d. Sejam M um ponto qualquer de P; A sua projeção sobre d; B a projeção de A sobre FM. Identifique o lugar geométrico de B quando M descreve a parábola P.
- 6. [IME 84] Em uma hipérbole (H) são dados o foco F e a diretriz correspondente d, que distam entre si 5 cm. A direção de uma assíntota forma um ângulo de 30 graus com o eixo focal. Pede-se calcular os valores dos semi-eixos de (H).
- 7. [IME 83] Em uma hipérbole (h) são dados: um foco F, uma assíntota (l) e uma tangente (t). Pede-se determinar graficamente o outro foco, a outra assíntota e os comprimentos dos eixos, justificando a construção executada. OBS: Nessa época o IME cobrava construção geométrica em suas questões. Deixamos a questão na bateria de exercício como treino para fixação do conceito.
- 8. [IME 81] Seja (d) a diretriz e F o foco de uma parábola. Seja MM´ uma corda focal qualquer. Mostre que as tangentes em M e M´ encontram-se em P, pertencente a (d) e que a reta PF é perpendicular a MM´.

- 9. [IME 77] A tangente e a normal em um ponto M de uma elipse cortam o eixo focal respectivamente em T e N, sendo os focos F e F´. a) Mostre que o segmento FF` é dividido harmonicamente por T e N, bem como a razão das distâncias de F aos pontos N e M é igual à excentricidade da elipse.
- b) Se a tangente e a normal citadas cortam o eixo não focal em T´ e N´, respectivamente, mostre que o círculo MT´N´ passa pelos focos F e F´.
- 10. [IME 93] Seja 2y=x² uma parábola com foco F e diretriz d. Uma reta, cujo coeficiente angular é m (diferente de 0) passa por F e corta a parábola em dois pontos A e B, respectivamente. Seja G o conjugado harmônico de F em relação a A e B. Pede-se:
- a) as coordenadas de G em função de m.
- b) o lugar geométrico do ponto G quando m varia.
- 11. [IME] Considere o triângulo ABC cujos lados são todos tangentes a uma parábola dada. Prove que o circuncírculo do triângulo passa pelo foco da parábola.

Sugestão: Utilize o teorema da Reta de Simpson

