

SIMULADO FÍSICA – COM GABARITO

Questão 1. (IIT) Um nêutron com energia cinética de 65 eV colide inelasticamente com um átomo de hélio ionizado com carga +1 em repouso. O nêutron é desviado de 90º em relação à sua trajetória original.

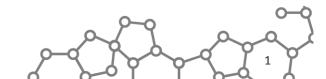
- a) Encontre os valores permitidos de energia do nêutron e do átomo após a colisão;
- b) Se o átomo sai do estado de excitação liberando radiação, encontre as frequências da radiação emitida.

(Dado que a massa do átomo = 4 x massa do nêutron; energia de ionização do átomo de hidrogênio = 13,6 ev).

Questão 2. (IIT) Uma barra uniforme de comprimento 2a e densidade ρ é móvel em um plano vertical ao redor de uma de suas extremidades, que está fixa e imersa em um líquido de densidade ρ' a uma profundidade de 2h abaixo da superfície livre desse líquido. Um líquido de densidade menor σ é adicionado sobre o primeiro líquido até que a barra esteja completamente submersa e em equilíbrio. Qual é o ângulo de inclinação da barra com relação à vertical?

Questão 3. Cava-se um túnel que atravessa a Terra diametralmente. Desprezando os movimentos rotacional e translacional da Terra;

- a) Mostre que se um corpo cai no túnel, ele executará um M.H.S;
- b) Calcule a frequência desse M.H.S;
- c) Calcule o tempo necessário para que o corpo percorra (durante o M.H.S) a segunda metade da amplitude a partir do ponto de menor energia cinética.


Dados: $g = 10 m/s^2$ e raio da Terra = 6400 km.

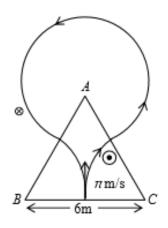
Questão 4. Suponha que uma nave espacial de massa m esteja orbitando a Terra, de massa M e raio r, em uma trajetória circular de raio R. Faz-se necessário que a nave mude sua trajetória orbital de modo a atingir uma distância máxima do centro da Terra igual a 3R. Para isso, utiliza-se a energia solar. Existem N células fotovoltaicas, cada uma de área S, na superfície da nave. As células captam a energia proveniente do Sol, a qual atinge a nave a um taxa de K W/ m^2 , armazenando-a durante um intervalo de tempo Δt e posteriormente liberando-a subitamente como energia cinética, de modo a atingir o objetivo supracitado. Desprezando-se outro tipo de energia a ser captada pelas placas que não seja a solar e sabendo-se que o momento angular da nave é conservado, calcule o intervalo de tempo Δt para que se atinja o objetivo, o expressando em função das constantes físicas convenientes e dos dados do problema.

OBS.: O módulo do momento angular de um corpo em sistemas orbitais é dado pelo módulo do momento linear do corpo multiplicado pelo raio da trajetória percorrida por ele.

Questão 5. Oito cargas pontuais de mesmo sinal estão dispostas nos vértices de um cubo de aresta com comprimento a. Liberam-se as cargas e mede-se a velocidade de cada uma delas quando estão muito distantes umas das outras. Calcule essa velocidade sabendo-se que a magnitude de cada carga é +q e a massa é m.

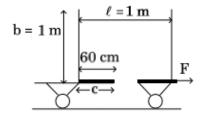
Questão 6. Sabe-se hoje que a entropia de um buraco negro é proporcional à área de seu horizonte de eventos. Utilizando análise dimensional escreva uma expressão para a área A do horizonte de eventos de um buraco negro em função de sua

massa m, da constante de gravitação universal G e da velocidade da luz c. Depois, sabendo que a entropia S pode ser escrita como S = φ A, expresse a constante φ em termos das constantes físicas fundamentais (h, c, G, Kb).


OBS.: Kb é a constante de Boltzman.

Questão 7. Um hemisfério encontra-se em equilíbrio estático, na iminência de deslizamento, apoiado em duas superfícies perpendiculares. Sabendo-se que o coeficiente de atrito entre o hemisfério e as superfícies de apoio é μ , calcule o ângulo que a base do hemisfério faz com a horizontal.

Dado: A distância entre o centro da base de um hemisfério de raio R e seu centro de massa é $\frac{3R}{8}$.


Questão 8. (IIT)Um cilindro consiste de duas partes que contêm dois diferentes gases. A superfície C é fixada, mas as partições A e B são finos diafragmas. Um diapasão se aproxima de A com velocidade 30 m/s e as colunas de ar nas duas partições vibram com a mínima frequência tal que existe um nodo em B e um antinodo em A. A velocidade do som nas duas partições está indicada na figura. A velocidade do som no ar é 330m\s. Qual é a frequência do diapasão?

Questão 9. Uma carga positiva 0,1 C e massa 0,1 Kg é projetada com velocidade π m/s do ponto médio da linha BC em direção ao vértice A de um triângulo equilátero de lado 6m. A magnitude do campo magnético é $\frac{\pi}{3}$ T dentro e fora do triângulo, como mostrado na figura. Então o tempo(em segundos) depois de que a partícula carregada cruza o lado BC pela primeira vez é:

Questão 10. Um vaso com um buraco em seu fundo é adaptado a dois pares de rodas, de modo a mover-se como a um carro. A massa do conjunto (vaso-rodas) é 60 kg. A área de secção transversal do vaso é 2 m^2 . Qual é a força necessária para empurrar o conjunto cheio com a máxima quantidade de água tal que não extravase água do vaso.

As dimensões do vaso estão representadas na figura. Densidade da água é 1000 $^{kg}/_{m^3}\!.$

GABARITO

Questão 1.

a)
$$\left[\frac{43,52}{n^2} - 4,52\right]$$
 e $\left[\frac{10,88}{n^2} + 15,12\right]$;

b)
$$11,67x10^{15}$$
 Hz; $9,84x10^{15}$ Hz; $1,83x10^{15}$ Hz.

Questão 2.

$$\theta = \arccos[\frac{h}{a}\sqrt{(\rho'-\sigma)(\rho-\sigma)}]$$

Questão 3.

- a)Demonstração;
- b) 84 min;
- c) 7 min.

Questão 4.

$$\frac{mMG}{4KNSR}$$

Questão 5.

$$v=\sqrt{rac{kq^2}{ma}\Big(3+rac{3}{\sqrt{2}}+rac{1}{\sqrt{3}}\Big)}$$
, onde $k=rac{1}{4\piarepsilon_0}$

Questão 6.

$$A = \frac{G^2 m^2}{c^4}; \varphi = \frac{k_b c^3}{Gh}$$

Questão 7.

$$\arcsin\left[\frac{8\mu(1+\mu)}{3(1+\mu^2)}\right]$$

Questão 8.

1500Hz

Questão 9.

7 s

Questão 10.

11 kN