4º Simulado – Comunidade IME/ITA/EN/AFAEstilo IME

Questão 1: Determine quantos Zeros há em 1000!.

Questão 2: Mostre que o número $x = \sqrt[3]{3 + \sqrt{9 + \frac{125}{27}}} - \sqrt[3]{-3 + \sqrt{9 + \frac{125}{27}}}$ é racional.

Questão 3: Prove que $(a+b)(a+c) \ge 2\sqrt{abc(a+b+c)}$ para quaisquer números reais positivos a,b,c.

Questão 4: Seja uma elipse centrada na origem e com eixo focal coincidente com o eixo Ox. Seja a parábola definida por: $\begin{cases} \vec{d} : y = m(x+c) \\ F(c,0) \end{cases}$. Dado que um dos pontos de intersecção da parábola com a elipse é o ponto P(a,0) e que o outro ponto de intersecção tem ordenada positiva. É dada a excentricidade da elipse como sendo $e = \frac{c}{a}$. Calcule o valor de m em função da excentricidade "e".

Questão 5:

1º parte: Simplifique a expressão
$$\frac{sena + sen3a + sen5a + ... + sen2005a}{\cos a + \cos 3a + \cos 5a + ... + \cos 2005a}$$

2º parte: Calcule a soma das soluções da equação $\cos \sec 13x + sen 13x = 2\cos 3x$, com $0 \le x \le \frac{\pi}{2}$.

Questão 6:

1º Parte: Seja N, natural tal que $N = 1^{2005} + 2^{2005} + 3^{2005} + 4^{2005} + ... + 10^{2005} + 1$. Determinar o algarismo das unidades de N.

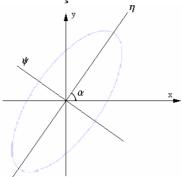
2º Parte: Sejam C₀, C₁, C₂, C₃ números reais. Sabendo que $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + ...$, calcule S, dado pela expressão: $S = \sum_{r=0}^{\infty} \frac{C_0 + C_1 n + C_2 n^2 + C_3 n^3}{n!}$.

Questão 7: Seja um triângulo acutângulo ABC. Sejam, H_A , H_B e H_C os pés das alturas relativas aos vértices A, B e C respectivamente. Sejam M, N e Q, os pontos médios dos lados \overline{AB} , \overline{BC} e \overline{CA} , respectivamente. Sejam os pontos R, S e T, os pontos médios dos segmentos HA, HB e HC, respectivamente, em que H

é o ortocentro do triângulo ABC. Prove que H_A , H_B , H_C , M, N, Q, R, S e T pertencem à mesma circunferência.

Questão 8: Uma cônica qualquer é tida pela equação genérica $Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$. Quando uma equação de uma cônica possui o termo em xy, essa se encontra rotacionada de um certo ângulo α em relação à horizontal. No entanto existe outro par de eixos " η O ψ " em que o eixo principal dessa cônica é paralelo a um dos eixos, assim a sua nova equação (agora em função de η e ψ) é dada por: $A_1\eta^2 + B_1\psi^2 + D_1\eta + E_1\psi + F_1 = 0$.

- a) Encontre as expressões de A_1, B_1, D_1, E_1, F_1 e α em função de A, B, C, D, E e F.
- b) Encontre a equação da cônica rotacionada de equação xy = 1 em função de η e ψ , bem como o seu ângulo de rotação.



Dado:
$$\begin{cases} y = \eta sen\alpha + \psi \cos \alpha \\ x = \eta \cos \alpha - \psi sen\alpha \end{cases}$$

Questão 9:

1º parte: Prove que qualquer função pode ser escrita como a soma de uma função par como uma função ímpar.

2º parte: Determinar todos os valores reais que satisfazem a equação $x^2 - 3x + 1 = \frac{3 + \sqrt{5 + 4x}}{2}$.

Questão 10: Seja uma pirâmide V-ABCD com faces laterais congruentes às do tetraedro regular V-BCE. Determine o número de faces do poliedro formado.