

	Professor: Judson Santos / Luciano Santos								
			nº						
Data:	/	/2011							

1º SIMULADO-ITA-IME-MATEMÁTICA-2011

01) Seja $\mathbb N$ o conjunto dos inteiros positivos. Dados os conjuntos $A=\{p\in\mathbb N;\ p\neq primo\}$ e $B=\{m^2-n^2;m,\,n\in\mathbb N\}$, considere as afirmações:

II.
$$A \cap B = \emptyset$$

III.
$$A \cup B = \mathbb{N}$$
.

Podemos afirmar que:

- a) apenas I é falsa.
- b) apenas II é falsa.
- c) apenas III é falsa.
- d) todas são falsas.
- e) apenas I e II são falsas.
- 02) Suponha que P (x) é um polinômio tal que P (1) = 1 e $\frac{P(2x)}{p(x+1)}$ = 8 $\frac{56}{x+7}$ para

todo real x para o qual ambos os lados são definidos. Então o valor P (-1) é igual a:

$$a)\frac{1}{21}$$

$$(b) - \frac{1}{21}$$

$$c)\frac{5}{21}$$

$$(d) - \frac{5}{21}$$

$$e) - \frac{1}{7}$$

03) Se x, y e z são números reais e positivos que satisfaz o sistema

$$\begin{cases} x^2 + 2(y-1)(z-1) = 85 \\ y^2 + 2(z-1)(x-1) = 84 \\ z^2 + 2(x-1)(y-1) = 89 \end{cases}$$

Então o valor de x+y+z é igual a:

- a)17
- b) 18
- c) 19
- d) 20
- e) 21

04)Para todo número real x que satisfaz a função $f(x) = \frac{1}{201\sqrt{1-x^2011}}$. Seja N os três últimos algarismos da expressão $\underbrace{f(f(....(f(2011))...))^{2011}}_{}$, então o valor de N é

2010 vezes

igual a: a)611

b) 511

c) 411

d) 311

e) 211

05) Sabe-se que o determinante da matriz M, apresentada abaixo, vale $a.sen^b\left(\frac{\alpha}{2}\right).sen^c\left(\frac{\beta}{2}\right).sen^d\left(\frac{\lambda}{2}\right)$, onde a,b,c e d são números inteiros e α,β e λ são números reais.

$$M = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & \cos \lambda & \cos \beta \\ 1 & \cos \lambda & 1 & \cos \alpha \\ 1 & \cos \beta & \cos \alpha & 1 \end{pmatrix}$$

Então o valor de a+b+c+d é igual a:

a) -10

b) 10

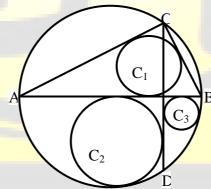
c) -12

d) 12

e) -16

06) Sabendo que α e β são os valores reais positivos de x e y que satisfazem a equação $\log\left(x^3 + \frac{y^3}{3} + \frac{1}{9}\right) = \log x + \log y$. Então o valor da expressão $9.\alpha^2.\beta^2 + 3.\alpha.\beta + 5$ é igual a:
a) 4 b) 5 c) 6 d) 7 e) 8

07)Na figura, AB é um diâmetro da circunferência maior e CD é perpendicular a AB. A circunferência C_1 (de raio C_1) é tangente aos 3 lados de Δ ABC, C_2 (de raio C_2) e C_3 (de raio C_3) são tangentes a AB, CD e à circunferência maior.



Então o valor da expressão $\left(\frac{r_2+r_3}{r_1}\right)$ é igual a:

a) 1

b) 2

c) $\frac{1}{2}$

d) $\frac{1}{4}$

e) 3

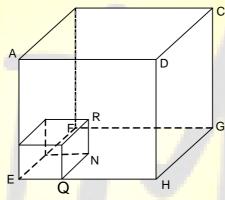
08) A equação $2000.x^6 + 100.x^5 + 10.x^3 + x - 2 = 0$ tem apenas duas raízes reais $\alpha e \beta$. Então o valor de $_{20\times\sqrt{\alpha^2+\beta^2}}$ é igual a:

- a) 8
- b) 9
- d) 11
- e) 12

09)Sabendo que os dois lados consecutivos de um paralelogramo é dado pela equação $8x^2 - 14xy + 3y^2 + 10x + 10y - 25 = 0$. Se o ponto de interseção das diagonais desse paralelogramo é o ponto (3:2), então a equação de reta que representa um dos outros dois lados desse paralelogramo pode ser:

- a) 2x 3y + 7 = 0
- b) 4x y 15 = 0
- c) 3x 4y + 4 = 0
- d) 4x + 3y + 8 = 0
- e) 2x + 3y 5 = 0

10) Na figura são mostrados dois hexaedros regulares, se O é o centro do maior dos hexaedros regulares tal que $\overline{OR} = \overline{EQ}$ e $(\overline{ON})^2 = 6(3 + \sqrt{3})$, calcule a área da superfície total do maior dos hexaedros.



- a) $144(2+\sqrt{3})$ b) $136(1+\sqrt{3})$
- c) $132\sqrt{2}$
- d) $136\sqrt{3}$ e) $142(2+\sqrt{3})$

11) Se os lados de um triângulo ABC são a, b, c e tem como ângulos opostos $\alpha, \beta \in \theta$ tal que $tg\left(\frac{\alpha}{2}\right) = \frac{5}{6}$ e $tg\left(\frac{\theta}{2}\right) = \frac{2}{5}$. Então sobre esse triângulo podemos afirmar

- a) os lados (a,b,c) nesta ordem estão em progressão aritmética.
- b) os lados (a,b,c) nesta ordem estão em progressão geometria.
- c) o triângulo é retângulo.
- d) o triângulo é equilátero.
- e) o triângulo é retângulo e isósceles.

12) Se
$$P = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$
, $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ e $Q = P.A.P^T$, onde P^T representa uma

matriz transposta de P. então a soma de todos os elementos da matriz X tal que $X=P^T.Q^{2010}.P$ é igual a:

- a) 2009
- b) 2010
- c) 2011
- d) 2012
- e) 2013
- 13) O coeficiente do termo independente de x no desenvolvimento da expansão

$$\left(\frac{x+1}{x^{\frac{2}{3}}-x^{\frac{1}{3}}+1}-\frac{x-1}{x-x^{\frac{1}{2}}}\right)^{10} \text{ \'e igual a:}$$

- a) 70
- b) 105
- c) 210
- d) 112
- e) 240
- 14) Sabendo que $\arg(z)$ é o argumento principal de um número complexo z e o |z| representa o módulo desse complexo. Das afirmativas abaixo
- I. Se $\arg\left(z^{\frac{1}{3}}\right) = \frac{1}{2}\arg\left(z^2 + \frac{1}{z}z^{\frac{1}{3}}\right)$, então o |z| é igual a 1.
- II. Se $\frac{5z_2}{7z_1}$ é um número complexo imaginário puro, então $\left|\frac{2z_1+3z_2}{2z_1-3z_2}\right|$ é igual a 1.
- III. Se o número complexo z=a+b.i e \overline{z} é o conjugado desse complexo z. Então o valor da expressão $tg\left[i.\log_e^{\left(\frac{\overline{z}}{z}\right)}\right]$ vale $\frac{2ab}{a^2-b^2}$, onde tg é a tangente do ângulo e e é a base de Euler.
- IV. Se o modulo do complexo $|z-2i|=2\sqrt{2}$, então $\arg\left(\frac{z-2}{z+2}\right)$ é igual a $\frac{\pi}{4}$.

É correto afirma:

- a) Somente I e II são verdadeiras
- b) Somente I , II e III são verdadeiras
- c) Somente II, III e IV são verdadeiras
- d) Somente I, III e IV são verdadeiras
- e) Todas são verdadeiras.
- 15) Seja $A(x_1,y_1), B(x_2,y_2), C(x_3,y_3)$ os três pontos de interseção da reta $y=\sqrt{3}.x$ com a curva de equação $x^3+y^3+3xy+5x^2+3y^2+4x+5y+1=0$ e O a origem do sistema de coordenadas cartesiano. Sabendo que P representa o produto das distâncias dos vértices A, B, C a origem O, então o valor de $(3\sqrt{3}+1)P$ é igual a:
- a)1

- b) 2
- c) 4
- d) 8
- e) 16

- 16) Se $(a_1, a_2, a_3, ..., a_n)$ é uma progressão geométrica tal que:
 - i) a razão é maior do que 1;
 - ii)a soma dos quatros primeiros termos vale 30;
 - iii)a soma dos quadrados dos quatros primeiros termos vale 340.
 - Séja S a soma dos algarismos do quarto desta progressão geométrica. Então o valor de S^2 é igual a:
- a)16
- b) 25
- c) 36
- d) 49
- e) 64
- 17) Se g(x) é uma função polinomial que satisfaz a seguinte relação g(x).g(y)=g(x)+g(y)+g(xy)-2 para todo $x,y\in\Re$. Então o valor de g(3) para g(2)=5 vale:
- a) 12
- b) 15
- c) 18
- d) 24
- e) 10
- 18) Seja $A = \{1,2,3,4,5\}$. Definimos que uma função $f: A \to A$ é idempotente se f(f(x)) = f(x), $\forall x \in A$.

Vejamos alguns exemplos da função $g: A \rightarrow A$ definida por:

$$g(1)=3$$
, $g(2)=5$, $g(3)=3$, $g(4)=4$, $g(5)=5$ são

idempotentes.

Então o número de funções idempotente $f: A \rightarrow A$ é igual a:

- a)144
- b) 156
- c) 164
- d) 196
- e) 225
- 19) Sabendo que $a_k + ib_k$ para k = 1,2,3,4 são as raízes do polinômio $f(x) = x^4 6x^3 + 26x^2 46x + 65$ com a_k , b_k inteiros e i é a unidade imaginária dos complexos. Então o valor da expressão $|b_1| + |b_2| + |b_3| + |b_4|$ é igual a:
- a)10
- b) 11
- c) 12
- d) 13
- e) 14
- Sejace S

QUESTÕES DISCURSSIVAS

21) Suponha que você tenha escrito em colunas os números inteiros de $1\,000\,000$ até 999999, inclusive, de modo que os números de cada coluna sejam formados pelos mesmos algarismos. Assim, por exemplo, os números 5544413 e 4445531 pertencem à mesma coluna; 5544413 e 5554413 pertencem a colunas diferentes. Quantas colunas você escreveu?

22) Se a_1 , a_2 ,, a_{2005} são números reais que satisfaz o sistema abaixo:

$$\begin{cases} a_{1}.1 + a_{2}.2 + a_{3}.3 + \dots + a_{2005}.2005 = 0 \\ a_{1}.1^{2} + a_{2}.2^{2} + a_{3}.3^{2} + \dots + a_{2005}.2005^{2} = 0 \\ a_{1}.1^{3} + a_{2}.2^{3} + a_{3}.3^{3} + \dots + a_{2005}.2005^{3} = 0 \end{cases}$$

$$= a_{1}.1^{2004} + a_{2}.2^{2004} + a_{3}.3^{2004} + \dots + a_{2005}.2005^{2004} = 0$$

$$= a_{1}.1^{2005} + a_{2}.2^{2005} + a_{3}.3^{2005} + \dots + a_{2005}.2005^{2005} = 1$$

Calcule o valor de a_1 ?

23) Se $x, y \in z$ são inteiros positivos e termos de uma progressão aritmética, mostre que a igualdade $x^5 + y^5 = z^5$ nunca é satisfeita.

24) Determine todas as funções $f: \Re -\{-1,1\} \to \Re$ que satisfazem à equação: $f\left(\frac{x-3}{x+1}\right) + f\left(\frac{3+x}{1-x}\right) = x$.

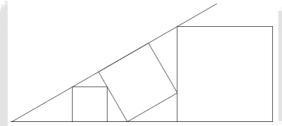
- 25) Suponha que p e q sejam números positivos para os quais $\log_9^p = \log_{12}^q = \log_{16}^{(p+q)}$. Calcule o valor de $\left(\frac{\sqrt{5}-1}{2.p}\right)$.(3.q) .
- 26) Se $\Delta = \begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix}$ representa um calculo de

determinante de ordem 3x3. Calcule o valor mínimo da expressão $\frac{\Delta}{a^2.b^2}$.

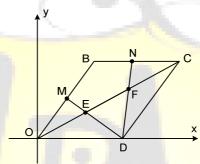
27) Se (x; y) representa um par de número real que satisfaz o sistema abaixo:

$$\begin{cases} 56x + 33y = \frac{-y}{x^2 + y^2} \\ 33x - 56y = \frac{x}{x^2 + y^2} \end{cases}$$
. Determine o valor de $|x| + |y|$.

28) Na figura abaixo existem três quadrados de lados 3 < 4 < x. Determine x.



29) No losango OBCD, "O" é a origem dos eixos coordenados, B(3, 4) e C(a, 4). Se M e N são pontos médios de \overline{OB} e \overline{OC} respectivamente. $\overline{DM} \cap \overline{OC} = \{E\}$ e $\overline{DN} \cap \overline{OC} = \{F\}$. Determine as coordenadas do baricentro do triângulo EFD.



30)Seja x, y, z e w números reais que satisfaz o sistema:

$$\begin{cases} w+x+y+z=5\\ 2w+4x+8y+16z=7\\ 3w+9x+27y+81z=11\\ 4w+16x+64y+256z=1 \end{cases}$$

Calcule o valor absoluto de 5w+25x+125y+625z

Loucos por

Professor: Judson Santos / Luciano Santos

GABARITO DO 1ºSIMULADO ITA - IME - 2011

01	02	03	04	05	06	07	80	09	10
D	D	В	A	A	D	В	В	В	A
11	12	13	14	15	16	17	18	19	20
								A	

QUESTÕES DISCURSSIVAS

21. RESPOSTA.: C₁₆ - 1

22. RESPOSTA: $a_1 = \frac{1}{2004!}$

23. RESPO<mark>ST</mark>A: demonstração

24. RESPOSTA: $f(x) = \frac{x(x^2 + 7)}{2(1 - x^2)}$

25. RESPOSTA: 03

26. RESPOSTA: 27

27. RESPOSTA: $\frac{11}{65}$

28. RESPOSTA: $\frac{16}{3}$

29. RESPOSTA: $\left(\frac{13}{3}, \frac{4}{3}\right)$

30. RESPOSTA: - 60

