rc

Pré-Universitário

TC

MATEMÁTICA

RUMO AO ITA - SEMANA 07

POLINÔMIOS

Polinômio de uma Variável

Chamamos polinômio de grau n a forma descritiva:

$$a_0 x^0 + a_1 x^1 + a_2 x^2 + \dots + a_n x^n = \sum_{i=0}^n a_i x^i$$

\[\left(n \subset N; \]

onde
$$\begin{cases} a_0, a_1, a_2, ..., a_n \text{ são reais ou complexos;} \\ a_n \neq 0; \\ \mathbf{x} \text{ é uma variável.} \end{cases}$$

Exemplos

- a) $4+3x-7x^2$ é um polinômio de grau 2.
- b) $7x-4x^7$ é um polinômio de grau 7.
- c) $\sqrt{7}x^9$ é um polinômio de grau 9.
- d) 27 é um polinômio de grau 0.
- e) $4 \frac{5}{3}x$ é um polinômio de grau 1.
- f) $ix^2 + (2+i)x 3$ é um polinômio de grau 2.

A definição pode ser estendida, incluindo o **0** como polinômio. Tal polinômio é chamado de **polinômio duplo** (ou identicamente nulo). Para esse polinômio não é definido o grau.

Dado um polinômio \mathbf{P} , o grau de \mathbf{P} poderá ser notado por $\partial \mathbf{P}$.

Dado um polinômio \mathbf{P} , na variável \mathbf{x} , ele poderá ser representado por $P(\mathbf{x})$.

Dado um polinômio:

$$P(x) = a_0 x^0 + a_1 x^1 + a_2 x^2 + ... + a_n x^n$$
,

para obtermos o seu valor numérico para $x=\alpha$, basta, substituindo x por α , calcular o valor de:

$$P(\alpha) = a_0 \alpha^0 + a_1 \alpha^1 + a_2 \alpha^2 + ... + a_n \alpha^n$$

Grau

Dados dois polinômios \boldsymbol{P} e $\boldsymbol{Q},$ tais que $\partial P \geq \partial Q\,,$ então:

a)
$$P = Q \Rightarrow \partial P = \partial Q$$

b)
$$\partial [P \cdot Q] = \partial P + \partial Q$$

c)
$$\partial [P:Q] = \partial P - \partial Q$$

d)
$$\partial [P+Q] \leq \partial P \text{ (se } P+Q \neq 0)$$

Raiz

Dado um polinômio \mathbf{P} , se $P(\alpha) = 0$, dizemos que α é uma raiz (ou zero) de \mathbf{P} .

Igualdade de Polinômios

Consideremos dois polinômios f e g de mesmo grau:

$$f = a_0 x^0 + a_1 x^1 + a_2 x^2 + ... + a_n x^n$$

$$g = b_0 x^0 + b_1 x^1 + b_2 x^2 + ... + b_n x^n$$

Dizemos que ${\bf f}$ é igual a ${\bf g}$ se, e somente se, $a_1=b_1$ para todo $i \, \big(i \le n \big)$.

Algoritmo da Divisão

Dado o polinômio A(x) e um polinômio B(x) nãonulo, existe, e é único, o par de polinômios Q(x) e R(x), satisfazendo as seguintes condições:

a)
$$A(x) = Q(x) \cdot B(x) + R(x)$$
 e

b)
$$R(x) \neq 0 \Rightarrow \partial R(x) < \partial B(x)$$
.

Observações

$$A(x)$$
 $B(x)$ $A(x)$: dividendo $B(x)$: divisor $Q(x)$: quociente $R(x)$: resto

- 1. Se tivermos R(x) = 0, a condição **a** resume-se em $A(x) = Q(x) \cdot B(x)$, e, neste caso, podemos dizer que:
 - a) A(x) é divisível por B(x).
 - b) B(x) é um divisor de A(x).
 - c) A(x) é um múltiplo de B(x).
 - d) A divisão de A(x) por B(x) é exata.
- 2. Se A(x) é divisível por B(x), escrevemo B(x) | A(x).

3. Casos particulares.

- a) Se A(x) = 0, então Q(x) = 0 e R(x) = 0.
- b) Se $\partial A(x) < \partial B(x)$, então Q(x) = 0 e R(x) = A(x).
- c) Nos demais casos, isto é, aqueles em que $\partial A(x) \ge \partial B(x)$, tem-se $\partial A(x) = \partial Bx + \partial Q(x)$.

Teorema do Resto

O resto da divisão de um polinômio P(x) por (x-a) é P(a).

De uma maneira mais geral, podemos ter como divisor: (x+a); (ax+b); (ax-b), onde o resto é dado de acordo com a tabela abaixo.

Dividendo	Divisor	Resto	
P(x)	x + a	P(-a)	
P(x)	x – a	P(a)	
P(x)	ax + b	$P\left(-\frac{b}{a}\right)$	
P(x)	ax – b	$P\left(\frac{b}{a}\right)$	

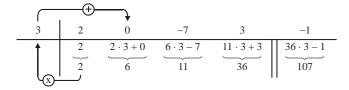
Teorema de D'Alembert

A condição necessária e suficiente para que o polinômio P(x) seja divisível por (x-a) é que **a** seja uma raiz de P(x), isto é, P(a)=0.

Dispositivo Prático de Briot-Ruffini

• Exemplo 1

Vamos efetuar a divisão $(2x^4 - 7x^2 + 3x - 1):(x - 3)$.



Quociente: $2x^3 + 6x^2 + 11x + 36$

Resto: 107

Sequência:

- a) Em cima, à direita, como o divisor é (x 3), marcamos 3.
- b) Em cima, em seguida, escrevemos todos os coeficientes do dividendo (mesmo os que são iguais a zero), ordenados segundo as potências decrescentes de x:

- c) Baixamos o 1º algarismo 2.
- d) $2 \cdot 3 + 0 = 6$; $6 \cdot 3 7 = 11$; $11 \cdot 3 + 3 = 36$; $36 \cdot 3 1 = 107$.
- e) 2, 6, 11 e 36 são os coeficientes do quociente.
- f) 107 é o resto.

Exemplo 2

 $(3x^4 - 2x^4 + x^2 - 7x + 1)$: (3x - 5), lembrando que $(3x - 5) = 3\left(x - \frac{5}{3}\right)$, vamos dividir primeiro por $\left(x - \frac{5}{3}\right)$ e depois por 3.

$\frac{5}{3}$	3	-2	1	-7	1
	3 3	$\underbrace{3\cdot\frac{5}{3}-2}_{3}$	$\underbrace{3\cdot\frac{5}{3}+1}_{6}$	$\underbrace{\frac{6 \cdot \frac{5}{3} - 7}{3}}_{3}$	$\underbrace{3\cdot\frac{5}{3}+1}_{6}$

Quociente: $x^3 + x^2 + 2x + 1$

Resto: 6

Máximo Divisor Comum de Polinômios

Máximo divisor comum de vários polinômios $P_1(x), P_2(x), ..., P_n(x)$ é um polinômio de maior grau, da forma $K \cdot D(x)$, que divide separadamente os polinômios dados, sendo K um número real qualquer, não-nulo.

Seja $D(x)-a_0x^n+a_1x^{n-1}+\ldots+a_n$; se $a_0=1$, diremos que D(x) é um polinômio unitário. Se D é um máximo divisor comum e é unitário, então indicaremos:

$$mdc(P_1, P_2, ..., P_n) = D(x)$$

Cálculo do Máximo Divisor Comum

Um dos métodos para o cálculo do máximo divisor comum é o das divisões sucessivas:

- a) Dados os polinômios $P_1(x)$ e $P_2(x)$ com $\partial P_1 \ge \partial P_2$.
- b) Deixar P_1 e P_2 na forma reduzida e ordenada, dividindo-se em seguida P_1 por P_2 .
- c) Seja R_1 o resto da divisão anterior. Se R_1 = 0, então, se P_2 for um polinômio unitário, $mdc \left(P_1 \cdot P_2 \right) = P_2$, caso contrário o máximo divisor comum será $K \cdot P_2$, tal que KP_2 seja unitário.

Se $R_1 \neq 0$, então:

d) Prosseguir na divisão, isto é, dividir P_2 por R_1 . Seja R_2 o resto desta segunda divisão. Se R_2 = 0, e R_1 for um polinômio unitário, então o $mdc(P_1 \cdot P_2) = R_1$, caso contrário o máximo divisor comum será $K \cdot R_1$, tal que KR_1 seja unitário.

OSG.: 16921/09

Sendo $R_2 \neq 0$, prosseguir com as divisões sucessivas até obter um resto nulo.

 e) O máximo divisor comum é o último divisor utilizado; se ele for uma constante, dizemos que os polinômios são primos entre si.

Mínimo Múltiplo Comum de Polinômios

Mínimo múltiplo comum de vários polinômios $P_1(x), P_2(x), ..., P_n(x)$ é o polinômio de menor grau na forma $K \cdot M(x)$ divisível pelos polinômios dados separadamente, onde K é um número real não-nulo.

Se M(x) for um polinômio unitário, indicaremos o mínimo múltiplo comum com a anotação: $mmc(P_1, P_2, ..., P_n) = M(x)$.

Cálculo do Mínimo Múltiplo Comum

Para se obter o mínimo múltiplo comum de polinômios, pode-se proceder de acordo com a seguinte regra:

- a) Achar o máximo divisor comum dos polinômios dados.
- b) O mínimo múltiplo comum é dado por:

$$M(x) = \frac{P_1(x) \cdot P_2(x)}{D(x)}$$

Se M(x) for um polinômio unitário, indicaremos com a notação $mmc(P_1,P_2)\!=\!M(x)$, caso contrário, o mínimo múltiplo comum será $K\!\cdot\!M(x)$, onde $K\!\cdot\!M(x)$ é polinômio unitário.

Divisibilidade por (x - a)(x - b)

Se um polinômio P(x) é divisível separadamente por (x-a) e (x-b), com $a \ne b$, então P(x) é divisível por (x-a)(x-b).

Consequência:

Dividindo-se P(x) por (x-a), e depois dividindo-se os quocientes que forem sendo obtidos por (x-a), ao fim de **r** divisões sucessivas, se todos os restos forem nulos, P(x) será divisível por (x-a).

EXERCÍCIOS

- 1. Um polinômio $p(x) = x^3 + ax^2 + bx + c$, satisfaz as seguintes condições: p(1) = 0 e p(-x) + p(x) = 0, qualquer que seja x real. Qual o valor de p(2)?
 - a) 2
 - b) 3
 - c) 4
 - d) 5
 - e) 6

- 2. Indicando as raízes da equação: $x^{100} 7x 1,25 = 0$, por $x_1, x_2, x_3, ..., x_{100}$ podemos afirmar que $\sum_{i=1}^{100} (x_i)^{100}$ é igual a:
 - a) 70
 - b) 700
 - c) -12.5
 - d) 125
 - e) n.d.a.
- 3. (Mack-SP) Dado o polinômio $p(x) = x^n 1$, $n \in N^*$, cujas raízes são 1, a, b, c, ..., t. Então, $(1-a)\cdot(1-b)\cdot(1-c)\cdot\ldots\cdot(1-t)$ vale:
 - a) n, somente se o grau do polinômio for par.
 - b) n, somente se o grau do polinômio for ímpar.
 - c) 2n, somente se o grau do polinômio for ímpar.
 - d) 3n, somente se o grau do polinômio for ímpar.
 - e) n, qualquer que seja o grau do polinômio.
- 4. Se $q_1(x)$ e r_1 são, respectivamente, o resto e o quociente da divisão polinomial x^8 por $x+\frac{1}{2}$, e se $q_2(x)$ e r_2 são o quociente e o resto, respectivamente, da divisão de $q_1(x)$ por $x+\frac{1}{2}$, então r_2 é igual a:
 - a) $\frac{1}{256}$
 - b) $\frac{-1}{16}$
 - c) 1
 - d) -16
 - e) 256
- 5. Dado $f(x) = x^4 + x^3 + x^2 + x + 1$, o resto da divisão de $f(x^5)$ por f(x) é:
 - a) 1
 - b) $x^4 + 1$
 - c) 3
 - d) $x^5 + 1$
 - e) 5

Gabarito					
01	02	03	04	05	
Е	D	A	В	Е	

Acrísio Fernandes Rev.: CALS 30/4/2009

