TC MATEMÁTICA

Pré-Universitário

## Geometria Analítica

#### Conteúdo:

- A reta Parte I
- Exercícios

## A Reta - Parte I

## **Tópicos Teóricos**

- 1. Dados os pontos  $A(x_A, y_B)$  e  $B(x_B, y_B)$ , definimos o vetor  $\overrightarrow{AB} = (x_A x_A, y_B y_A)$ .
- 2. Vetor nulo de  $R^2$ : (0, 0) =  $\vec{0}$
- 3. Vetor simétrico: se  $\vec{u}=(x,y)$ , então  $-\vec{u}=(-x,-y)$  é simétrico de  $\vec{u}$ .
- 4. Soma de vetores: se  $\vec{u} = (x_1, y_1), = (x_2, y_2),$  então  $\vec{u} + \vec{v} = (x_1 + x_2, y_1 + y_2).$
- 5. Diferença de vetores: se  $\vec{u} = (x_1, y_1)$ ,  $\vec{v} = (x_2, y_2)$ , então  $\vec{u} \vec{v} = \vec{u} + (-\vec{v}) = (x_1 x_2, y_1 y_2)$ .
- 6. Multiplicação de um vetor no R² por escalar:  $\vec{u} = (x, y), a \in R \Rightarrow a \vec{u} = a(x, y) = (ax, ay).$
- 7. Vetores de mesma direção:  $\vec{u}$  e  $\vec{v}$  têm mesma direção se, e somente se,  $\exists k \in R$  tal que  $\vec{u} = k \vec{v}$ .
- 8. Módulo de um vetor em R^: Se =(u\_1, u\_2, ..., u\_n), então  $\left|\vec{u}\right| = \sqrt{\sum_{i=1}^n u_i^2} \ .$
- 9. Produto Escalar em R<sup>2</sup>

 $\vec{u}=(x_1,\ y_1),\ \vec{v}=(x_2,\ y_2)$  são vetores do R². Definimos como Produto Interno ou Produto Escalar de  $\vec{u}$  por  $\vec{v}$  e representamos por  $\vec{u}:\vec{v}$ , o número real  $\vec{u}\cdot\vec{v}=x_1x_2+y_1y_2$ . Daí,

I.  $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cos \theta$  (demonstra-se pela lei dos cossenos), sendo  $\theta$  o ângulo entre os vetores  $\vec{u} = \vec{v}$ . Logo,  $\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$ .

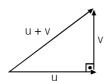
$$\text{II. } |\vec{u}| = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}| \cos \theta} \text{ ou cos } \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$$

# Exercícios de Fixação

- **01.** Determine a distância entre dois pontos **A** e **B** do plano cartesiano
- **02.** Determine as coordenadas de um ponto **P** que divide um segmento AB em uma dada razão real  $k \neq -1$ .
- 03.
- A) Prove que as coordenadas do ponto médio de um segmento AB são dadas por  $\frac{A+B}{2}$ .
- B) Prove que as coordenadas do baricentro de um triângulo ABC são dadas por  $\frac{A+B+C}{3}$ .
- C) Mostre que a distância do baricentro a um vértice é o dobro da distância ao lado oposto.
- D) Encontre as coordenadas do incentro de um  $\triangle$ ABC.
- **04.** Mostre que os pontos médios **P**, **Q**, **R**, **5** de qualquer quadrilátero no plano ou no espaço são vértices de um paralelogramo.
- **05.** Seja ABCDEF um hexágono qualquer e A<sub>1</sub>B<sub>1</sub>C<sub>1</sub>D<sub>1</sub>E<sub>1</sub>F<sub>1</sub> o hexágono formado pelos baricentros dos triângulos ABC, BCD, CDE, DEF, EFA, FAB. Mostre que A<sub>1</sub>B<sub>1</sub>C<sub>1</sub>D<sub>1</sub>E<sub>1</sub>F<sub>1</sub> tem lados opostos paralelos e iguais.
- **06.** Seja **r** uma reta passando pelo baricentro de um triângulo ABC. Prove que a soma das distâncias de dois dos vértices de ABC à reta é igual à distância do 3° vértice a **r**.
- 07. Seja ABCD um quadrilátero convexo, P, Q, R, S, os pontos médios de AB, BC, CD, DA, T a interseção de AC e BD, M a interseção de PR e QS, G o centro de massa de distribuição uniforme do quadrilátero.
  - Prove que M é o ponto médio da Mediana de Euler do quadrilátero
  - II. Prove que T, M, G são colineares e TM = 3MG.
- **08.** A<sub>1</sub>A<sub>2</sub>A<sub>3</sub>A<sub>4</sub> é um tetraedro e G<sub>i</sub> é o baricentro da face oposta a A<sub>i</sub>, para i = 1, 2, 3, 4. B<sub>ij</sub> é o ponto médio de A<sub>i</sub>A<sub>j</sub>. As retas A<sub>i</sub>G<sub>i</sub> são chamadas medianas do tetraedro. As retas B<sub>12</sub> e B<sub>34</sub>, B<sub>13</sub> e B<sub>24</sub>, B<sub>14</sub> e B<sub>23</sub> são chamadas bimedianas do tetraedro. Prove que:
  - As quatro medianas e as três bimedianas passam por um mesmo ponto chamado baricentro do tetraedro.
  - II.  $\frac{A_i G}{G G_i} = \frac{3}{1}.$
  - III. As bimedianas são divididas ao meio por G.
- **09.** Sejam **M** e **N** os pontos médios dos lados AB e CD de um quadrilátero qualquer. Prove que  $\overrightarrow{MN} = \frac{\overrightarrow{BC} + \overrightarrow{AD}}{2}$ .
- 10. (Moldávia) As diagonais de um quadrilátero inscritível ABCD têm um ponto H comum. Perpendiculares HM e HN aos lados BC e AD são traçadas. Prove que os pontos médios dos segmentos AB, CD, MN são colineares.

#### TC - MATEMÁTICA

- **11.** Mostre que se  $\vec{u} = (x_1, y_1)$ ,  $\vec{v} = (x_2, y_2)$  são vetores do R² e  $\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2$ , então  $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cos \theta$ , sendo  $\theta$  o ângulo entre os vetores e . (sugestão: lei dos cossenos)
- **12.** Mostre, através da figura a seguir, que a condição de ortogonalidade de dois vetores  $\mathbf{u}$  e  $\mathbf{v}$  é  $\mathbf{u} \cdot \mathbf{v} = 0$ .



- **13.** Mostre que o pé da perpendicular a partir de um ponto **A** até uma reta BC é dado por  $(A \lambda B + (\lambda 1)C) \cdot (B C) = 0$ .
- **14.** Em um tetraedro, dois pares de arestas opostas são perpendiculares. Prove que o terceiro também é.
- **15.** Seja SABC um tetraedro tri-retângulo, tal que **S** seja o vértice dos ângulos retos. Prove que a projeção de **S** em ABC é ortocentro do ΔABC.
- **16.** Seja ABCD uma pirâmide regular com base ABC, AB = BC = CA = a e AD = BD = CD = b e sejam **M** e **N** os pontos médios dos segmentos AB e CD, respectivamente. Um plano α passando por MN intersecta os segmentos AD e BC nos pontos **P** e **Q** respectivamente.
  - A) Prove que  $\frac{AP}{AD} = \frac{BQ}{BC}$ .
  - B) Encontre  $\frac{AP}{AD}$  no caso quando a área do quadrilátero MQNP é mínima.
- 17. Determine  $A \cdot B + A \cdot C + B \cdot C$ , sabendo que A + B + C = 0, |A| = 2, |B| = 3,  $|C| = \sqrt{5}$ .
- **18.** (Banco IMO) É dado um quadrilátero convexo ABCD com diagonais congruentes AC = BD. Quatro triângulos eqüiláteros são desenhados externamente sobre seus lados. Prove que os segmentos unindo os baricentros dos triângulos sobre lados opostos são perpendiculares.
- **19.** (Brasil) Em um triângulo isósceles ABC (AC = BC) seja **O** o seu circuncentro, **D** o ponto médio de AC e **E**, o baricentro do ΔDBC. Mostre que a reta OE é perpendicular a BD.
- **20.** Três pontos **A**, **B**, **C** são tais que  $AC^2 + BC^2 = \frac{AB^2}{2}$ . Qual é a posição relativa desses pontos.

# **Exercícios Propostos**

- **01.** Até que ponto o segmento de extremos A(3,0) e B(0,7) deve ser prolongado no sentido de **A** para **B** para que o comprimento triplique?
- **02.** Os pontos médios dos lados AB, BC e CA de um triângulo são, respectivamente, M(1, 3), N(– 1, 4) e P(0, 7). Obter os vértices **A**, **B** e **C**.

- **03.** Demonstrar analiticamente as propriedades das bases médias de triângulo e trapézio.
- **04.** (OPM) Demonstre que, numa pirâmide triangular regular (a base é um triângulo equilátero), duas arestas reversas são ortogonais.
- **05.** Encontre **c** de tal forma que (– 1, 1, c) e (– 1, 1, c) e a origem sejam vértices de um triângulo retângulo na origem.
- **06.** Demonstre que se **A** é um vetor perpendicular a dois vetores **B** e **C**, então **A** é perpendicular a B + C.
- **07.** Demonstre que se **A** e **B** são vetores tais que A + B é perpendicular a A B, então IAI = IBI.
- **08.** Seja **u** um vetor perpendicular a todo vetor **x**. Mostre que u = 0.
- **09.** (Equação vetorial da reta) Sejam A e B dois pontos distintos em R<sup>n</sup>, em que n = 1, 2, 3. Mostre que em um ponto P ∈ AB ⇔ existem números reais x e y tais que P = xA + yB e x + y = 1.
- **10.** Sejam **A**, **B** e **C** pontos não colineares em R<sup>n</sup>, em que n = 2, 3, e seja T o triângulo ABC mais seu interior. Mostre que em um ponto P ∈ T existem números reais **x**, **y** e **z** não negativos tais que P = xA + yB + zC e x + y + z = 1.
- 11. Sejam A, B, C e D pontos não colineares em R<sup>n</sup>, em que n = 2, 3, e seja T o tetraedro ABCD mais seu interior. Mostre que em um ponto P ∈ T ⇔ existem números reais x, y, z e w não negativos, tais que P = xa ⇔ yb + zC + wD e x + y + z + w = 1.
- 12. Seja E um ponto sobre o prolongamento do lado AB, por B, de um quadrado ABCD. F é o ponto de interseção das retas BC e DE e G, o ponto de interseção de AF e CE. Mostre que BG e DE são perpendiculares.
- 13. Seja ABC um triângulo retângulo de hipotenusa BC, onde construímos externamente quadrados BCDE e ACFG. Seja M o ponto de interseção das retas AE e BF. Mostre que M está sobre o perímetro do quadrado inscrito em ABC com lados paralelos aos catetos.
- **14.** Mostre que  $AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + DA^2 \Leftrightarrow A + C = B + D$ .
- **15.** Sejam **A**, **B**, **C**, **D** quatro pontos no espaço. Prove que se, para todos os pontos **X** no espaço, vale a equação  $AX^2 + CX^2 = BX^2 + DX^2$ , então ABCD é retângulo.
- **16.** Prove o teorema de Euter: no quadrilátero ABCD com medianas MN e PQ, AC<sup>2</sup> + BD<sup>2</sup> = 2(MN<sup>2</sup> + PQ<sup>2</sup>).
- **17.** Sejam **A**, **B**, **C**, **D** pontos no espaço. Mostre que  $AB \perp CD \Leftrightarrow AC^2 + BD^2 = AD^2 + BC^2$ .
- **18.** Prove que se **M** é um ponto e ABCD, um retângulo, então  $\overrightarrow{MA} \cdot \overrightarrow{MC} = \overrightarrow{MB} \cdot \overrightarrow{MD}$ .
- **19.** Seja **Q** um ponto arbitrário no plano e **M** o ponto médio de AB. Prove que  $QA^2 + QB^2 = 2 QM^2 + \frac{AB^2}{2}$ .



2 OSG.: 36036/10

- **20.** Seja ABC um triângulo e seja **0** um ponto qualquer no espaço. Mostre que  $AB^2 + BC^2 + CA^2 \le 3(OA^2 + OB^2 + OC^2)$ .
- **21.** As diagonais de um quadrilátero ABCD se intersectam em **O**. Mostre que  $AB^2 + BC^2 + CD^2 + DA^2 = 2(AO^2 + BO^2 + CO^2 + DO^2)$  exatamente se AC $\perp$ BD ou uma das diagonais é bissectada por **O**.
- **22.** O ponto de interseção das retas  $\mathbf{r}$ :  $\begin{cases} x = p 3 \\ y = 2p + 9 \end{cases}$  e

s: 
$$\begin{cases} x = 2t \\ y = 4t - 1 \end{cases}$$
:

A) é (10,19).

B) é (– 6,3).

C) é (0, – 1).

D) é (-3,9).

E) não existe.

- **23.** (OCM) "As coordenadas dos vértices de um triângulo equilátero são números inteiros". Demonstre que essa afirmação é falsa.
- **24.** Sejam A(1, 3), B(4, -5) e C(7, 5) três vértices consecutivos de um paralelogramo ABCD.
  - A) Determine as coordenadas de **D**.
  - B) Seja **E** o ponto de interseção das diagonais. Calcule a medida de DE.
- **25.** (FGV) Considere os pontos A(1; 2), B(– 2; 4) e C(3; 3). A reta suporte da altura do triângulo ABC pelo vértice **C** tem equação:

A) 
$$2y - x - 3 = 0$$

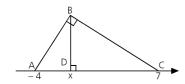
B) 
$$2y + x + 3 = 0$$

C) 
$$2y + x - 9 = 0$$

D) 
$$y - 2x + 3 = 0$$

E) 
$$y + 2x + 9 = 0$$

- **26.** (UFSCar) Os pontos **P** e **Q** dividem o segmento de extremos (5,8) e (1,2) em três partes iguais. Se as retas perpendiculares a esse segmento pelos pontos **P** e **Q** interceptam o eixo **y** nos pontos (0,p) e (0,q), com p > q, então 6q 3p é igual a:
  - A) 10
  - B) 8
  - C) 7
  - D) 5
  - E) 2
- **27.** (UFSCar) A hipotenusa do triângulo retângulo ABC está localizada sobre a reta real, conforme indica a figura.



Se x > 0 e a medida da altura BD relativa ao lado AC do triângulo ABC é  $2\sqrt{6}$  , então **x** é o número real:

- A)  $2\sqrt{3}$
- D) 5

B) 4

- E)  $3\sqrt{3}$
- C)  $3\sqrt{2}$

**28.** (Vunesp) Num sistema de coordenadas cartesianas ortogonais, o coeficiente angular e a equação geral da reta que passa pelos pontos **P** e **Q**, sendo P(2,1) e **Q** o simétrico, em relação ao eixo **y**, do ponto Q'(1,2) são, respectivamente:

A) 
$$\frac{1}{3}$$
;  $-3y - 5 = 0$ 

B) 
$$\frac{2}{3}$$
;  $2x - 3y - 1 = 0$ 

C) 
$$-\frac{1}{3}$$
; x + 3y - 5 = 0

D) 
$$\frac{1}{3}$$
; x + 3y - 5 = 0

E) 
$$-\frac{1}{3}$$
; x + 3y + 5 = 0

- **29.** Considere os pontos A(– 1, 1), B(11, 4), C(7, 14); Seja I(x, y) o ponto de interseção das bissetrizes do ΔABC. Então:
  - A) I é um ponto com coordenadas inteiras.
  - B) apenas uma das coordenadas de I é racional.
  - C) I está no 2° quadrante.
  - D)  $x + y \in Q$ .
  - E) n.d.a.
- **30.** (ITA) Considere os pontos A(0,0), B(2,0) e C(0,3). Seja P(x,y) o ponto de interseção das bissetrizes internas do  $\Delta$ ABC. Então, x + y é igual a:

A) 
$$\frac{12}{5 + \sqrt{13}}$$

B) 
$$\frac{8}{2+\sqrt{1}}$$

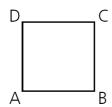
C) 
$$\frac{10}{6 + \sqrt{13}}$$

- D) 5
- E) 2
- **31.** Num sistema cartesiano, as coordenadas dos vértices de um triângulo ABC são A(0,0), B(3,6) e C(8,0). A soma das coordenadas do ortocentro (encontro das alturas) desse triângulo é:

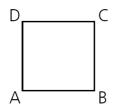
A) 
$$\frac{12}{5}$$

- B)  $\frac{11}{2}$
- C)  $\frac{13}{6}$
- D)  $\frac{13}{2}$
- E)  $\frac{11}{3}$

- **32.** (OPM) Usando geometria analítica, demonstrar o seguinte teorema: "Num triângulo retângulo, a bissetriz do ângulo reto divide a hipotenusa em segmentos proporcionais aos catetos".
- **33.** (OPM) Demonstre, usando coordenadas (geometria analítica) o teorema: "Qualquer ângulo inscrito em um semicírculo é um ângulo reto".
- **34.** (IME) Demonstrar analiticamente que se uma reta perpendicular a uma corda de uma circunferência passa pelo seu centro, então ela divide a corda no seu ponto médio.
- **35.** (EUA) Um ponto **P** pertence ao plano de um dado quadrado de lado ℓ. Os vértices do quadrado são A, B, C, D, tomados no sentido anti-horário. Sejam **u**, **v**, **w** as distâncias de **P** a **A**, **B**, **C**. Qual a maior distância que **P** pode estar de **D** se u² + v² = w²?



- **36.** (Fuvest) São dados os pontos A(1, 1) e B(9, 3). A mediatriz do segmento AB encontra o eixo dos **y** no ponto de ordenada igual a:
  - A) 20
  - B) 21
  - C) 22
  - D) 23
  - E) 24
- **37.** (IME) ABCD é um quadrado de lado ℓ, conforme a figura abaixo. Sabendo-se que **K** é a soma dos quadrados das distâncias de um ponto do plano definido por ABCD aos vértices de ABCD, determine:



- A) o valor mínimo de  ${\bf K}$  e a posição do ponto  ${\bf P}$  na qual ocorre este mínimo;
- B) o lugar geométrico de **P** para  $K = 4\ell^2$ .

- **38.** (IME) Sejam **r**, **s**, **t** três retas paralelas não coplanares. São marcados sobre **r** dois pontos **A** e **A'**, sobre **s** os pontos **B** e **B'** e sobre **t** os pontos **C** e **C'**, de modo que os segmentos AA'=a, BB'=b e CC'=c tenham o mesmo sentido.
  - A) Mostre que se **G** e **G'** são os baricentros dos triângulos ABC e A'B'C', respectivamente, então GG' é paralelo às três retas.
  - B) Determine GG' em função de **a**, **b**, **c**.
- **39.** Seja ABCD uma pirâmide triangular regular de base ABC. Sejam **a** e **b** as medidas de AB e CD, respectivamente. Sendo M e N os pontos médios de AB e CD, analise as afirmações:
  - I. MN ⊥ AB.
  - II. CD⊥AB.

III. 
$$\overrightarrow{MN} = \frac{\overrightarrow{AD} + \overrightarrow{BC}}{2}$$

IV. MN = 
$$\frac{\sqrt{A^2 + B^2}}{4}$$

Quantas são verdadeiras?

A) 0

B) 1

C) 2

Ď) 3

- E) 4
- 40. Seja ABC um triângulo retângulo com catetos AB e BC paralelos aos eixos coordenados. Se a equação da reta suporte da mediana partindo de A é x + y 4 = 0, então a equação da reta passando pela origem e perpendicular à mediana partindo de C pode ser:

A) 
$$y = x$$

B) 
$$x + 2y = 0$$

C) 
$$x + 3y = 0$$

D) 
$$x + 4y = 0$$

- E) n.d.a.
- **41.** Uma reta passando pelo ponto (–a, 0) corta o segundo quadrante determinando uma região triangular com área **T**

A equação da reta é:

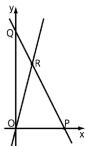
A) 
$$2Tx + a^2y + 2aT = 0$$

B) 
$$2Tx - a^2y + 2aT = 0$$

C) 
$$2Tx + a^2y - 2aT = 0$$

D) 
$$2Tx - a^2y - 2aT = 0$$

- E) n.d.a.
- **42.** Determine a equação do lugar geométrico dos pontos cujas distâncias ao ponto (3, 2) são iguais às distâncias à reta 2x + y = 3.
- **43.** As retas de equações y = ax + b e y = cx são ilustradas na figura a seguir. Sabendo que o coeficiente **b** é igual à média aritmética dos coeficientes **a** e **c**:
  - A) expresse as coordenadas dos pontos P, Q e R em termos dos coeficientes **a** e **b**.
  - B) determine **a**, **b** e **c** sabendo que a área do triângulo OPR é o dobro da área do triângulo ORQ e que o triângulo OPQ tem área 1.



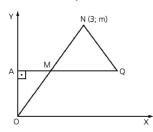
- **44.** As coordenadas de **A**, **B** e **C** são (5, 5), (2, 1) e (0, k), respectivamente. O valor de **k** que torna AC + BC o menor possível é:
  - A) 3

B)  $4\frac{1}{2}$ 

C)  $3\frac{6}{7}$ 

D)  $4\frac{5}{6}$ 

- E)  $2\frac{1}{7}$
- **45.** Determine a soma das coordenadas do ponto simétrico de (10, 21) em relação à reta 2x + 5y 38 = 0.
  - A) –10
- B) –11
- C) 12
- D) –13
- E) n.d.a.
- **46.** No plano cartesiano da figura a seguir, MNQ é um triângulo equilátero e AM = MQ. O valor de **m** é:
  - A) 3
  - B)  $2\sqrt{2}$
  - C)  $2\sqrt{3}$
  - D)  $\sqrt{3}$
  - E) 3√3



| Gabarito – Exercícios Propostos |    |    |    |    |    |    |    |    |    |
|---------------------------------|----|----|----|----|----|----|----|----|----|
| 01                              | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 |
| *                               | *  | -  | -  | *  | -  | -  | -  | -  | -  |
| 11                              | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| _                               | -  | _  | -  | -  | -  | -  | -  | -  | _  |
| 21                              | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| -                               | Е  | -  | *  | А  | В  | В  | C  | Е  | А  |
| 31                              | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| В                               | _  | _  | -  | *  | С  | *  | -* | D  | Е  |
| 41                              | 42 | 43 | 44 | 45 | 46 |    |    |    |    |
| В                               | *  | *  | Е  | В  | Е  |    |    |    |    |

- \* **01:** 6, 21
  - **02:** A(2, 6), B(0, 0), C(-2, 8)
  - **05**:  $\pm \sqrt{2}$
  - **24:** A) D(4, 13)
- B) DE = 9
- **35:**  $2 + \sqrt{2}$
- **37:** A) 2ℓ<sup>2</sup>
  - B) circunferência circunscrita ao quadrado
- 38: A) Demonstração
  - B)  $\frac{a+b+c}{2}$
- **42:**  $x^2 4xy + 4y^2 18x 14y + 56 = 0$
- **43:** A)  $P(-\frac{b}{a}, 0), Q(0,b), P(\frac{b}{2(b-a)}, \frac{b(2b-a)}{2(b-a)})$ 
  - B) a = -8, b = 4, c = 16
  - Demonstração



André 11/09/10 Rev.: TSS