

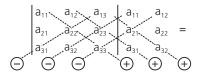
Determinantes I

Regras práticas

• Determinante de ordem 2

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

• Determinante de ordem 3 (Regra de Sarrus)



$$=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}$$

Cofator

Se A = (n_{11}) então A_{11} = 1 (cofator de elemento a_{11}) Se A é matriz quadrada de ordem n ≥ 2 então $A_{ii} = (-1)^{i+j} \times D_{ii}$, onde D_{ii} é o determinante que se obtém de **M** suprimindo a linha **i** e a coluna **i**.

Teorema de Laplace

O determinante de uma matriz quadrada é igual à soma dos produtos dos elementos de uma fila qualquer pelos respectivos cofatores.

Propriedades

I. Determinante igual a zero

O determinante de uma matriz quadrada é igual a zero se a matriz possui:

- a) uma fila nula.
- b) duas filas paralelas iguais.
- c) duas filas paralelas proporcionais.
- d) uma fila que é combinação linear das outras filas paralelas.

II. Determinante não se altera

O determinante de uma matriz quadrada não se altera se:

- a) trocarmos ordenadamente linhas por colunas ($\det M = \det M^t$).
- b) somarmos a uma fila uma combinação linear de outras filas paralelas (Teorema de Jacobi).

III. Alteração no determinante

O determinante de uma matriz quadrada de ordem **n** altera-se:

- a) trocando de sinal, quando duas filas paralelas trocam de lugar entre si.
- b) ficando multiplicado por α , quando os elementos de uma fila são multiplicados por α .
- c) ficando multiplicado por α^n quando a matriz é multiplicada por **a**, ou seja: det (α A) = α ⁿdet **A**, onde **n** é a ordem da matriz.

Observação:

Entende-se por fila qualquer linha ou coluna de uma matriz.

IV. Propriedades complementares

a) Teorema de Binet

Sendo A e B matrizes quadradas de mesma ordem, então: $det(A \times B) = detA \times detB$

b) Quando todos os elementos acima e/ou abaixo da diagonal principal forem zeros, o determinante será o produto dos elementos da diagonal principal.

$$\begin{vmatrix} a & 0 & 0 & 0 \\ x & b & 0 & 0 \\ y & z & c & 0 \\ m & n & p & d \end{vmatrix} = abcd$$

V. Adição de determinantes

Se M e M' são matrizes, de ordem **n**, idênticas **exceto** na i-ésima linha, então

detM" = detM + detM', onde M" é uma matriz de ordem n idêntica às matrizes M e M', exceto na sua i-ésima linha, que é obtida somando-se as i-ésimas linhas de M e M'.

Exercícios

01. (UFSE) O determinante da matriz $A = (a_{ij})_{3 \times 3}$, onde ay $= 2^{i-j}$, é igual a:

B) -8

02. Mostre que
$$\begin{vmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{vmatrix} = a(b-a)(c-b)(d-c).$$

03. Prove que
$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ bc & ca & ab \end{vmatrix} = \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$$

04. Verifique que
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1+x & 1 & 1 \\ 1 & 1 & 1+y & 1 \\ 1 & 1 & 1 & 1+z \end{vmatrix} = xyz$$

05. Seja a matriz $A = [a_{ij}]_{n \times n}$. A matriz **B** é obtida de **A**, multiplicando-se, nesta, cada elemento a_{ij} por k^{i-j} , $k \in \mathbb{R}^*$. Demonstre que det $B = \det A$.

GABARITO — Determinantes I										
01	02	03	04	05						
С	-	-	_	_						

Demonstração

Sistemas Lineares

Matriz Inversa I

Definição

 M^{-1} é a inversa de **M** se, e somente se, $M \cdot M^{-1} = M^{-1} \cdot M = I_n$

Propriedades

- I. A⁻¹ é única
- II. $(A^{-1})^{-1} = A$
- III. $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$
- IV. $(A^t)^{-1} = (A^{-1})^t$
- $V. \quad \det A^{-1} = \frac{1}{\det A}$

Teorema de Cauchy

A soma dos produtos dos elementos de uma fila qualquer de uma matriz **M**, ordenadamente, pelos cofatores dos elementos de uma fila paralela, é igual a zero.

Matriz Adjunta (A)

É definida como sendo a transposta da matriz ${\bf N}$ dos cofatores, ou seja, $\overline{{\bf A}}={\bf N}^t.$

Propriedade $A \cdot \overline{A} = \overline{A} \cdot A (\det A) \cdot I_a$

Teorema

$$A^{-1} = \frac{1}{\det A} \cdot \overline{A}.$$

Corolário: $\exists A^{-1} \Leftrightarrow \det A \neq 0$.

Observação:

$$a_{ij}^{-1} = \frac{1}{\det A} \cdot A_{ji}, \ \forall i,j$$

Exercícios

01. (ITA) Sendo $A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -3 & 2 \\ 3 & -1 & -2 \end{pmatrix}$, então o elemento da terceira

linha e primeira coluna, de sua inversa, será igual a:

A) $\frac{5}{8}$

B) $\frac{9}{11}$

C) $\frac{6}{11}$

D) $-\frac{2}{13}$

E) $\frac{1}{13}$

02. (EN) Dadas as matrizes: $A = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} e B = \begin{pmatrix} \frac{1}{4} & 1 \\ -\frac{1}{4} & 2 \end{pmatrix}$, então a

soma da matriz inversa de **A** com o dobro da matriz transposta de **B** é:

- A) $\begin{pmatrix} 0 & \frac{7}{2} \\ \frac{1}{2} & 2 \end{pmatrix}$
- B) $\begin{pmatrix} \frac{3}{4} & -\frac{1}{6} \\ \frac{5}{2} & 5 \end{pmatrix}$
- $C) \begin{pmatrix} \frac{1}{2} & \frac{1}{4} \\ 2 & 0 \end{pmatrix}$
- $0)\begin{pmatrix}0&1\\3&2\end{pmatrix}$

- 03.
- A) Mostre que se uma matriz é inversível, então o seu determinante é diferente de zero.
- B) Calcule o determinante da inversa da matriz

$$P = \begin{pmatrix} \sqrt{2} & -1 & 1\\ \sqrt{2} & 1 & -1\\ 0 & \sqrt{2} & \sqrt{2} \end{pmatrix}.$$

- **04.** (Mack) Se detA = 5 e A⁻¹ = $\begin{pmatrix} \frac{4}{5} & a \\ -\frac{1}{5} & \frac{2}{5} \end{pmatrix}$ então **a** é igual a:
 - A) $-\frac{8}{5}$
- B) C

C) $\frac{1}{5}$

D) $-\frac{3}{6}$

- E) $\frac{2}{5}$
- **05.** (Mack) Seja $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Então $(A + A^{-1})^3$ é igual a:
 - A) matriz nula de ordem 2.
 - B) matriz identidade de ordem 2.
 - $C) \frac{1}{2}A$
 - D) 2⁷A
 - E) 8A
- **06.** (IME) Determine uma matriz não singular **P** que satisfaça à equação matricial.

$$P^{-1}A = \begin{bmatrix} 6 & 0 \\ 0 & -1 \end{bmatrix}$$
, onde $A = \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix}$

- **07.** Sendo A = $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$, obter o elemento a_{23}^{-1} da matriz inversa de **A**.
- **08.** (IME) Uma matriz quadrada é denominada ortogonal quando a sua transposta é igual a sua inversa. Considere essa definição, determine se a matriz [R], abaixo, é uma matriz ortogonal, sabendo-se que ${\bf n}$ é um inteiro e α é um ângulo qualquer. Justifique sua resposta.

$$[R] = \begin{bmatrix} \cos(n\alpha) & -\sin(n\alpha) & 0 \\ \sin(n\alpha) & \cos(n\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

09. (UFC) Sejam A, B e A + B matrizes n × n (n \geq 1) invertíveis. Encontre uma expressão para (A⁻¹ + B⁻¹)⁻¹ em termos de **A**, (A + B)⁻¹ e **B**.

- **10.** (ITA) Julgue: Sejam **A**, **B** e **C** matrizes quadradas $n \times n$ tais que A e B são inversíveis e ABCA = A^t , então $detC = det(AB)^{-1}$.
- **11.** (ITA) Julgue: Sejam \mathbf{m} e \mathbf{n} números reais com m \neq n e as matrizes: $A = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$. Sabendo que a matriz mA + nB não é inversível, então \mathbf{m} e \mathbf{n} possuem sinais contrários.

Gabarito – Matriz Inversa I												
01	02	03	04	05	06	07	08	09	10	11		
_	_	0	_	V	*	F	*	*	*	V		

– Demonstração

* **06**: $\begin{pmatrix} 1/6 & -2 \\ 5/6 & -4 \end{pmatrix}$

Anotações

AN - 18/08/12 - REV.: TONY

OSG.: 60672/12

