

Professor Juscelino - Elite Belém

O ÁTOMO

É formado por duas regiões: o núcleo (que contém toda carga positiva e praticamente toda massa do átomo) e a eletrosfera (que fica envolta do núcleo e é praticamente vazia e onde se encontram os elétrons).

O núcleo do átomo é extremamente pequeno em comparação ao átomo.

Rutherford denominou as partículas positivas de prótons. Em 1932 Chadwick descobriu uma partícula não carregada eletricamente e a chamou de nêutron.

Os prótons e os nêutrons são encontrados no núcleo, daí são chamados de nucleons.

Para identificar um átomo geralmente temos que especificar seu número atômico e seu número de massa.

O número atômico é o número de prótons do núcleo.

O número de massa é o número total de nucleons.

O número de nêutrons do átomo é N = A - Z.

ISÓTOPOS: átomos com mesmo número de prótons e diferentes números de massa.

ISÓTONOS: átomos com o mesmo número de nêutrons.

ISÓBAROS: átomos com o mesmo número de massa e diferentes números de prótons.

Átomos que perdem elétrons ficam com carga positiva e são íons chamados de *cátions*.

Átomos que ganham elétrons ficam com carga negativa e são íons chamados de *ânions*.

Espécies químicas que apresentam o mesmo número de elétrons são chamados de isoeletrônicos.

EXERCÍCIOS

- 1. Um átomo apresenta 15 prótons e 12 nêutrons. Qual seu A e seu Z?
- 2. Um cátion bivalente apresenta 20 prótons e número de massa 39. Qual seu número de elétrons, nêutrons e atômico?
- 3. Um átomo A apresenta 40 nucleons e é isótopo de outro átomo B que ganhou 2 elétrons e apresenta depois desse ganho 22 elétrons. Qual o número de nêutrons do átomo A?
- **4.** Um átomo **X** com 20 prótons perde 2 elétrons e um átomo **Y** com massa 40 e 24 nêutrons torna-se um ânion bivalente. Essas espécies químicas são ou não isoeletrônicas? Justifique.
- **5.** Certo átomo **X** possui número atômico 3x e número de massa 6x + 1. Outro átomo **Y** é isótopo de **X** e possui Z = 2x + 4 e A = 5x + 3. Qual o número atômico de **X** e qual o número de nêutrons de **Y**?
- **6.** Três átomos A, B e C tem as seguintes propriedades:

Átomo A: número atômico 5x + 2

número de massa 10x + 1

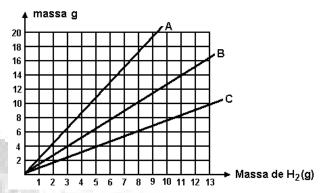
é isótopo de C.

Átomo B: número de massa 5x + 16

é isóbaro de A.

Átomo C: é isótono de A.

número atômico 2x + 11


Qual o número de massa do átomo C?

7. Um átomo **A** apresenta Z = 3x e A = 30 e outro átomo **B** isóbaro de **A** possui A = 6x e Z = 3x + 1. Tanto **A** quanto **B** formam moléculas diatômicas e reagem entre si formando **AB**, conforme a equação:

$$A_2 + B_2 \longrightarrow 2 AB$$

Considerando um rendimento de 80%:

- a) Que massa de AB é produzida quando reagimos 20 g de A_2 com B_2 ?
- b) Qual o número de nêutrons dos átomos A e B?
- c) Que massa de B_2 deve ser utilizada para produzir 128 g de AB com esse rendimento de 80%?
- 8. Observe o gráfico abaixo:

Sabe-se que A e B são isótopos. O átomo A possui Z = 5x + 2 e massa atômica 6x + 10. O átomo B apresenta Z = 3x + 6 e 12 nêutrons.

A reação entre B e H₂ é mostrada abaixo:

$$B + H_2 \longrightarrow BH_2$$

O composto BH₂ é iônico e pode sofrer um processo de eletrólise.

Em relação ao exposto acima:

- a) Qual o número de C?
- b) Qual a massa de **C** necessária para produzir 180 g de CH₂?
- c) Faça a equação de dissociação iônica do BH₂.
- d) Desenhe um esquema da eletrólise do BH₂, mostrando o cátodo, o ânodo e o sentido de movimentação dos íons.

MASSAS ATÔMICAS

É a massa de uma molécula medida em unidades de massa atômica (u. m. a). Qual calculamos a massa de um mol de moléculas temos a massa molar, calculada em g.mol⁻¹.

ABUNDÂNCIA ISOTÓPICA

A maioria dos elementos é encontrada como uma mistura de isótopos.

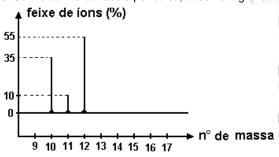
As massas e abundâncias isotópicas são calculadas por um aparelho chamado de espectrômetro de massa.

DETERMINAÇÃO DAS MASSAS ATÔMICAS

A massa atômica é calculada pela média da massa dos isótopos. A média é uma média ponderada.

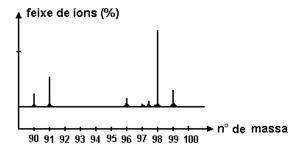
EXERCÍCIOS

1. A "molécula" do bicarbonato de sódio é NaHCO₃, qual a sua massa molar?


- 2. O sulfato de cálcio pentahidratado tem a fórmula CaSO₄ · 5 H₂O. Qual sua massa molecular?
- **3.** O composto abaixo é utilizado como anestésico local: Qual a massa molar desse anestésico?

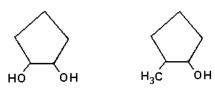
4. Um componente orgânico da carapaça de moluscos é o composto simbolizado abaixo: Qual sua fórmula molecular?

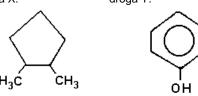
5. Um antitérmico pediátrico muito utilizado é o mostrado abaixo: Qual sua fórmula molecular?


$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{H_3C} - \mathsf{C} \\ \mathsf{C} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \\ \mathsf{OH} \end{array} \\ \begin{array}{c} \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_3} \\ \mathsf{OH} \\ \end{array}$$

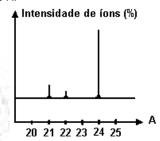
6. Com o auxilio da tabela periódica, observe o gráfico:

O gráfico é retirado de um espectrômetro de massa.

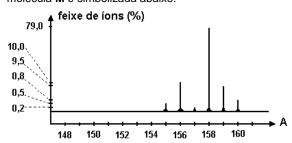

- a) Quantos isótopos o gráfico representa?
- b) Qual a abundância isotópica de cada isótopo?
- c) Qual a massa atômica desse elemento?
- d) Qual poderia ser o elemento da tabela periódica que melhor simboliza o elemento do gráfico?
- 7. O espectrômetro de massa de um laboratório determinou:


O teste foi feito para determinar se uma pessoa usou ou não um determinado tipo de droga. As drogas utilizadas (suspeitas de serem utilizadas) podem ser de quatro tipos: A, B, X e Y. Qual das drogas abaixo pode ser a ingerida por essa pessoa?

droga B:


droga A:

droga X: droga Y:



 ${f 8.}$ Abaixo é feita uma espectrometria de massa do elemento ${f X.}$

Sobre ele afirmamos que:

- a) Existem quatro isótopos do elemento X.
- b) A maior abundancia isotópica é do isótopo X²³.
- c) O isótopo X²² existe numa quantidade bastante reduzida.
- d) O isótopo \mathbf{X}^{25} existe em uma pequeníssima porcentagem.
- e) Existem 3 picos sendo o de menor massa sempre o mais abundante.
- ${\bf 9.}$ A espectrometria de massa de uma determinada molécula ${\bf M}$ é simbolizada abaixo:

- a) Qual a massa "atômica" da molécula X?
- b) Qual das fórmulas abaixo pode representar a molécula \mathbf{X} ?

molécula 1: molécula 2:

molécula 3: molécul

$$X + 2 H_2O \longrightarrow Y$$

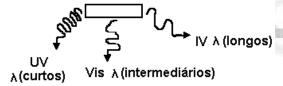
Qual a massa de Y formada quando o rendimento é de 60%?

10. A molécula abaixo é representada como um grande quimioterápico:

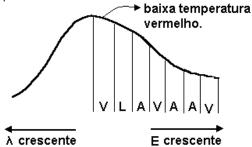
$$H_3C-COO-CH_2$$
 CH_2-NH_2
 $O-C-NH_2$
 O

O composto abaixo é um bom antiácido estomacal: NaHCO₃

A substância abaixo é um grande solvente inorgânico:


$$H_2O$$

Sobre eles:


- a) Quais as fórmulas moleculares das três substâncias?
- b) Faça um gráfico de espectrometria de massa colocando as três substâncias, indicando cada uma delas.

AQUECIMENTO DE METAIS

Metal aquecido emite radiação com comprimento de onda que dependem da temperatura.

Espectro da radiação emitida por um sólido aquecido.

O corpo está aquecido ao rubro pois $\boldsymbol{\lambda}$ max está na faixa do vermelho.

Os átomos vibram e emitem radiação, as vibrações são quantizadas.

Equação de Planck:

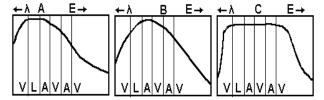
E = h.f onde:

E = energia

 $h = constante de Planck (6,626.10^{-34} J.s)$

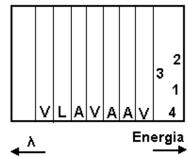
f = freqüência da radiação.

$$\mathbf{E} = \frac{\text{h.c}}{\text{f}} \mathbf{c} = \text{velocidade da luz } (3.10^8 \text{ m.s}^{-1})$$


A maioria da luz emitida por um átomo vibra em freqüências intermediárias.

EXERCÍCIOS

1. Considere um metal X que é aquecido a três temperaturas diferentes, sendo:


 $T_A = 350 \text{ K}$; $T_B = 500 \text{ K}$ e $T_C = 900 \text{ K}$.

Nos três momentos encontramos os seguintes espectros de radiação emitida pelo sólido aquecido.

Sobre o aquecimento desse metal afirmamos:

- I. O metal aquecido à T_A está incandescente ao rubro.
- II. O metal aquecido à T_{B} está incandescente ao laranjado.
- III. O metal aquecido à T_{C} está incandescente ao branco.
- IV. O metal emite radiação de comprimento de onda curtos, intermediários e longos, ou seja, emite luz UV, visível e IV nas três situações citadas.
- V. O metal emite radiação com maior energia em T_{B} que em T_{C} .
- Julgando os itens, são corretos:
- a) Somente II é correto.
- b) Somente I, II e III são corretos.
- c) Somente I, III, IV e V são corretos.
- d) Somente I, III e IV são corretos.
- e) Todos são corretos.
- 2. Um átomo apresenta diferentes freqüências de radiação emitidas por aquecimento, ilustradas no gráfico:

- a) Quais as cores simbolizadas pelo aquecimento do átomo nas curvas 1, 2, 3 e 4.
- b) Qual das curvas apresenta o maior comprimento de onda na faixa do visível.
- c) Qual das curvas apresenta o menor comprimento de onda na faixa do visível.
- **3.** Um átomo emite radiação com freqüência de 800 Hz, qual sua energia?
- **4.** A energia de uma onda luminosa é de 2.10³J, qual a freqüência dessa onda?

- 5. Uma onda apresenta energia de 5.10⁴J, qual seu comprimento de onda?
- 6. O comprimento de onda de uma certa radiação eletromagnética é de 800 nm. Qual a energia dessa onda?
- 7. Um átomo emite uma radiação eletromagnética de 1200 nm. A luz emitida é na faixa do visível, infravermelho ou ultravioleta?

EFEITO FOTOELÉTRICO

Ocorre quando a luz atinge a superfície de um metal e há ejeção de elétrons pela superfície.

Para ocorrer o efeito fotoelétrico a luz tem que ter uma frequência mínima. Quando a lua tem uma freqüência f major que a mínima, o excesso de energia faz com que o elétron escape do átomo com mais velocidade.

A energia necessária para romper a ligação elétron/núcleo é E = h.f. Dependendo da fregüência da onda ela pode fornecer energia ao elétron fazendo com que ele saia do átomo (ionização).

Energia mínima = 2x

emissão do elétron

E = 3x provoca a emissão eletrônica emissão do elétron (somente salto quântico) (efeito fotoelétrico) e a energia excedente é transformada em energia cinética Ec = X

EXERCÍCIOS

1. Um átomo metálico X apresenta energia de Ionização 5.103J e foi submetido a radiação em diferentes faixas de fregüência:

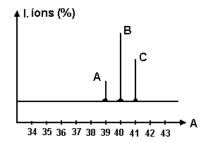
radiação 1.	$6,0.10^{32}\mathrm{s}^{-1}$
radiação 2.	$7,5.10^{30} \text{ s}^{-1}$
radiação 3.	$9,0.10^{28} \text{ s}^{-1}$
radiação 4.	$5,0.10^{18} \text{ s}^{-1}$

Quais radiações

podem causar um efeito fotoelétrico no átomo X?

2. Uma barra metálica foi iluminada com luz de diversas freqüências:

 $7,0.10^{18} \, \mathrm{s}^{-1}$ Luz A


8,0.10¹⁷ s Luz B

 $8,0.10^{14} \text{ s}^{-1}$ Luz C

Para que ocorra o efeito foto elétrico nesse metal é necessário vencer uma energia de ionização de $5,2.10^6$ J.

Qual das luzes pode ser usada para causar o efeito fotoelétrico? Justifique.

3. Três átomos são detectados por um espectrômetro de massa:

Os três isótopos apresentam energia de ionizações diferentes apesar de próximas:

 $EI_A = 6.0.10^6 J$

 $EI_B = 6,7.10^6 J$

 $EI_C = 8,0.10^6 J$

Com fins de realizar efeito foto elétrico nos isótopos utiliza-se luz com frequência de 6,0.10³⁰s⁻¹.

Sobre tais átomos:

- a) Qual o possível elemento químico formador dos três isótopos?
- b) Usando tal fonte luminosa é possível fazer a ionização em qual isótopo? Justifique.
- 4. Em uma experiência referente ao efeito fotoelétrico foi utilizado um metal M e, constatou-se que para haver emissão de sues elétrons era necessário a aplicação de luz ultravioleta.

Para mostrar tal situação faz-se três outros experimentos:

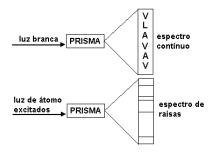
Experimento I: emitiram luz sobre o metal de λ = 700 nm. Experimento II: emitiram luz sobre o metal de $\lambda = 400$ nm. Experimento III: emitiram luz sobre o metal de λ = 1200 nm.

Em relação a esses experimentos, afirma-se:

- I. A emissão de elétrons acontece no experimento I pois os fótons são suficientemente energéticos para romper a força de ligação núcleo / elétron.
- II. Ocorre emissão de elétrons no experimento II pois os fótons tem frequência mínima para fazer os elétrons saírem do átomo do metal M.
- III. Como o comprimento de onda do experimento III é muito grande, ele possui pequena energia, porém, nesse comprimento os elétrons são emitidos.
- IV. O experimento I está na faixa da luz visível, o experimento II na faixa do ultravioleta e o experimento I sai com maior velocidade do que o elétron emitido no experimento II.

Sobre as afirmações:

- a) Somente I é correta.
- b) Somente II é correta.
- c) Somente III é correta.
- d) Somente II e IV são corretas.
- e) Todas são corretas.
- 5. Os aparelhos de compact disc (CD) operam com Lasers que emitem luz vermelha com o comprimento de 685 nm.
- a) Qual a energia de um fóton dessa luz?
- b) Qual a energia de um mol de fótons dessa luz?
- 6. Compare a energia de 1 mol de fótons de luz vermelha de um laser (175 KJ/mol) com a energia de 1 mol de fótons de raios X com o comprimento de onda de 2,36 nm. Qual tem maior energia? Qual a razão entre as energias?



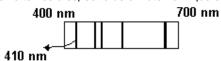
ESPECTROS DE RAIAS

O espectro de luz de todos os comprimentos de onda é denominado espectro contínuo (luz branca).

Os átomos absorvem energia e ficam excitados. Estes átomos emitem luz somente de certos comprimentos de ondas (energia quantizada).

Quando essa luz emitida passa por um prisma vemos somente "Linhas espectrais" coloridas. Este espectro é denominado espectro de emissão de raias.

Equação de Rydberg:


$$\frac{1}{\lambda} = R \left(\frac{1}{2^n} - \frac{1}{n^2} \right) \quad n > 2 \qquad R = 1,097.10^7 \text{m}^{-1}$$
 série de Balmer

EXERCÍCIOS

- 1. Quando um átomo gasoso é colocado num campo elétrico eles ficam "excitados" e emitem radiações eletromagnética. Isso é observado passando a luz emitida pelo átomo através de um prisma.
- Se o elétron desse átomo sai do nível inicial e salta para o quarto nível e em seguida retorna para o segundo nível. Qual o comprimento da onda emitida?
- 2. Um elemento químico recebe uma certa quantidade de energia e seus elétrons ficam excitados no quinto nível, para então, retornarem ao nível de liberação de luz visível.

Qual a freqüência dessa onda?

- 3. Determinado átomo recebe uma energia capaz de excitar seus elétrons do 2° para o 4° nível energético, logo depois emite radiação quando seus elétrons retornam a nível 2. Qual a energia que o átomo recebeu?
- 4. Quando um elemento gasoso à baixa pressão está a um campo elétrico intenso, seus átomos absorvem energia e ficam excitados e, então, emitem radiação eletromagnética. Isso pode ser observado passando a luz emitida pelos átomos através de um prisma. O resultado é o chamado espectro de emissão de raias. Abaixo temos o espectro de um átomo A que emite luz.

- a) Qual a energia da primeira linha espectroscópica emitida pelo átomo A?
- b) Qual o comprimento de onda da terceira linha desse espectro desse átomo?
 (considerando a série de Balmer).

NÚMEROS QUÂNTICOS

A lonização de um elétron no átomo depende de um conjunto de quatro números denominados de números quânticos.

Esses números dependem da distribuição eletrônica em níveis e subníveis de energia.

Os subníveis conhecidos são s², p⁶, d¹⁰, f¹⁴.

A energia absoluta de um elétron é dada por E = n + l.

O diagrama de Linus Pauling é:

K = 2
L = 8
M = 18
N = 32
O = 32
P = 18
Q = 8
R = 2

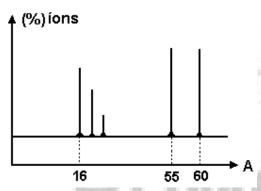
Os quatro números quânticos são:

- 1. Número quântico principal (n): simboliza o nível onde o elétron se encontra.
- 2. Número quântico secundário (azimuta) (/): simboliza o subnível onde o elétron se encontra, seus valores são:

- 3. Número quântico magnético (m): simboliza o orbital onde o elétron se encontra dentro do subnível.
- 4. Número quântico spin (s): simboliza o sentido de rotação do elétron dentro do orbital.

Principio da exclusão de Pauli: num átomo não pode existir 2 elétrons, ou mais, que possuam os mesmos números quânticos.

Regre de Hund: o orbital só recebe o 2° elétron quando todos os outros subníveis já receberam seu 1° elétron.


EXERCÍCIOS

- 1. Determine os quatro números quânticos do átomo ₂₁X.
- 2. Determine os números quânticos do penúltimo elétron do átomo $_{26}\mathrm{X}.$
- **3.** Um átomo tem número de massa 50 e 20 nêutrons. Quais os números quânticos de seu ultimo elétron?
- **4.** Certo átomo possui 25 nêutrons e número de massa 56, quais os quatro números quânticos de seu antepenúltimo elétron?
- **5.** Certo átomo possui os números quânticos n = 2; l = 1; m = 0; $s = -\frac{1}{2}$. Esses números são de seu último elétron. Qual seu número atômico?
- **6.** Um átomo de determinado elemento apresenta n = 3; l = 1; m = +1; $s = -\frac{1}{2}$ para seu penúltimo elétron, qual seu número atômico?
- 7. O átomo A possui os seguintes números quânticos para seu último elétron n = 3; I = 2; m = +2; s = $-\frac{1}{2}$. Sabendo que ele possui 28 nêutrons, qual seu número de massa?

- **8.** Um átomo apresenta número de massa 22 e os seguintes números quânticos para seu último elétron n = 2; I = 1; m = +1; s = + $\frac{1}{2}$. Qual seu número de nêutrons?
- **9.** Um cátion bivalente apresenta 15 prótons. Quais seus números quânticos do ultimo elétron da sua última camada?
- **10.** Um átomo X apresenta os seguintes números quânticos para seu último elétron n=2; l=1; m=+1; $s=-\frac{1}{2}$ e é isóbaro de um átomo B com A=5x+4. Sabe-se que a massa de X é 8x-2, qual o número de nêutrons do átomo X?
- 11. Certo átomo A com os números quânticos n = 3; l = 2; m + 2; $s = -\frac{1}{2}$ para seu último elétron torna-se um cátion pentavalente que possui 30 nêutrons.

Para descobrir a massa desse átomo fez-se uma espectrometria de massa, porém o átomo encontra-se num minério junto com outros 3 átomo, sendo 1 desses possuindo 3 isótopos.

- a) Qual a configuração eletrônica do átomo A?
- b) Quais os quatro números <u>quânticos</u> do cátion pentavalente?
- c) Qual dos picos do espectrômetro simboliza o átomo A?
- d) Se o átomo simbolizado pelo pico C do espectrômetro reagir com ácido sulfúrico (H_2SO_4) conforme a equação:

$$C + H_2SO_4 \longrightarrow CSO_4 + H_2$$

Que massa de C precisamos para reagir completamente com 490 g do ácido?

e) Para o átomo simbolizado pelo pico A do espectrômetro determine os quatro números quânticos de sue último elétron sabendo que ele possui 8 nêutrons.